Meteorites give new insights into Martian water

A view of Mars. Credit: NASA/JPL-Caltech

Mars is a dry, desert world devoid of any life (that we know of). But once upon a time, that wasn’t the case. Data collected by the robotic emissaries we’ve sent to explore the planet on our behalf indicate that the red planet was once a lush and wet world.

However, scientists are still trying to piece together Martian history to understand what happened to the planet’s water. While we know much of it was lost when the planet’s atmosphere was stripped away, what we don’t know is where the water originated from. Researchers uncovered a crucial clue in Martian meteorites found here on Earth.

“A lot of people have been trying to figure out Mars’ water history,” Jessica Barnes, an assistant professor of planetary sciences in the University of Arizona Lunar and Planetary Laboratory, said in a statement. “Like, where did water come from? How long was it in the crust (surface) of Mars? Where did Mars’ interior water come from? What can water tell us about how Mars formed and evolved?”

A view of the Northwest Africa 7034 meteorite (aka Black Beauty). Credit: Institute of Meteoritics UNM

Like the Earth, Mars is made of different layers: a crust, mantle, and a core. Meteorites, like the ones that fell to Earth, are made of the Martian crust, which can tell us a lot about the planet’s composition when the pieces are analyzed. According to a study published this week in Nature Geoscience, there could be at least two distinct reservoirs of ancient water lurking below the Martian surface. Each with its own (different) chemical signature.

This means that Mars probably never had a global ocean of magma beneath its surface like we do on Earth.

For this study, Barnes and her team looked for clues as to the Mars’ water history by analyzing the ratio of two types (isotopes) of hydrogen. They’re not the first to do so, but previous results have been very inconsistent.

To better understand how the planet formed and where its water came from, the researchers examined two different meteorites: a coin-sized sample known as Black Beauty (or NWA 7034), which formed when a huge impact cemented together various pieces of the Martian crust, and Allan Hills 84001 (ALH84001), a sample once thought to contain Martian microbes. The data shows that water comes from two different sources.

A view of the ALH84001, Alan Hills meteorite. Credit: NASA

The team was searching for different isotopes of hydrogen — light hydrogen and heavy hydrogen — which can help trace the origin of water in rocks. (Isotopes are variations of chemical elements, with different numbers of neutrons.)

“Light hydrogen” contains one proton (and no neutrons) in its nucleus, whereas “heavy hydrogen,” also known as deuterium, contains one proton and one neutron in its core. The ratio of these two isotopes act like a fossil record of water, telling a planetary scientist its origin.

Here on Earth, protium (or light hydrogen) is the most abundant isotope. It’s found in the atmosphere, in rocks, and the ocean. On Mars, however, deuterium (heavy hydrogen) is the most abundant in the atmosphere, while Martian rocks contain a range of ratios from Earth-like to Mars-like.

To better understand the vast variation, Barnes and her team decided to focus on samples they knew came from the Martian crust — Black Beauty and Alan Hills. The team found that both samples interacted with water at different point in Mars’ history, but had similar isotope ratios, that was very similar to younger rocks analyzed by the Curiosity rover.

Curiosity drills into the ground to analyze samples. Credit: NASA/JPL-Caltech

This data suggested a surprising result: that the chemical composition of that water hasn’t changed for nearly 4 billion years.

“Martian meteorites basically plot all over the place, and so trying to figure out what these samples are telling us about water in the mantle of Mars has historically been a challenge,” Barnes said.”The fact that our data for the crust was so different prompted us to go back through the scientific literature and scrutinize the data.”

So the team compared their results to previous isotope studies, where the meteorites originated in the Martian mantle. They discovered that the isotope ratios were consistent with two types of volcanic rock, known as shergottite, that’s found in the Martian mantle.

A view of the interior of Earth, Mars, and the Moon. Credit: NASA

This means that the water within the meteorite samples came from two different sources. It also indicates that Mars lacked a global magma ocean, which would have made the mantle more consistent in its composition.

“These two different sources of water in Mars’ interior might be telling us something about the kinds of objects that were available to coalesce into the inner, rocky planets,” Barnes said.

Meaning two distinct planetary precursors with vastly different water contents could have collided, but never thoroughly mixed. And understanding how Mars formed is essential for understanding its past habitability and potential for life.

Amy Thompson: I write about space, science, and future tech.
Related Post
Disqus Comments Loading...