SpaceX CEO Elon Musk says Starlink launch will reuse Falcon Heavy’s fairing

SpaceX CEO Elon Musk has revealed that the company successfully recovered both Falcon Heavy Flight 2 fairing halves intact and plans to reuse them this year on an operational Starlink launch.

This will be SpaceX’s first attempt to reuse Falcon payload fairings, a capability that could ultimately save up to 10% – around $6M – and countless production time per launch. Intriguingly, the Falcon Heavy fairing halves were recovered without the use of dedicated recovery vessel Mr. Steven – the vessel has been out of commission for months after an accident ripped off two of its four arms. Instead, the fairing halves parasailed to a soft ocean landing where SpaceX recovery experts aboard GO Searcher and GO Navigator carefully extracted both halves from the surface of the Atlantic. In order to reuse the fairing halves, SpaceX will need to somehow solve – if they haven’t already – the challenge of cleaning contaminated fairings.

How To Clean Your Fairing

The challenge of reusing payload fairings that have been some combination of immersed and thoroughly coated with salt water is by no means an easy one, evidenced primarily by the fact that no company or space agency has yet to try. As a temporary part of a rocket’s uppermost stage, every kilogram of weight present on the fairing can have an almost equally deleterious effect on that same rocket’s ability to place payloads in orbit. This is why the added complexity of additional deployable fairing mechanisms is universally accepted – by jettisoning fairings as soon as possible, rockets are able to carry significantly more payload to a given orbit.

This means that adding even more weight and complexity to fairings – optimized to be extraordinarily light for their often massive sizes – is avoided with extreme prejudice. This is the problem SpaceX faces in its quest to reliably recover and reuse fairings – how does one take fragile objects landing in the middle of the ocean after traveling no less than two kilometers per second (~1.2 mi/s) at apogees upwards of 100 km (62 mi) and prevent them from being destroyed, all while keeping them as light as possible?

SpaceX’s solution was to attach GPS-guided parafoils to each fairing half, as well as cold gas thrusters that allow the halves to orient themselves and remain stable between separation and parafoil deployment. Part two of that solution was to quite literally catch those floating halves out of the air with a giant, speedy boat outfitted with an equally giant net held up by four arms. Despite 5+ catch attempts and many, many controlled drop tests, that vessel – Mr. Steven – has never managed to successfully catch a Falcon fairing half. In early 2019, SpaceX moved the ship from California to Florida due to a launch drought facing the company’s West Coast launch facilities. Less than two weeks after arriving in Florida, an unknown accident resulted in the vessel losing both its net and two of its four arms to the sea, and Mr. Steven has since remained inactive – aside from infrequent trips out and about – in Port Canaveral.

Iconic fairing recovery vessel Mr. Steven seen shortly after an October 2018 series of controlled fairing drop tests. The fairing was likely placed manually in the net. (Pauline Acalin)

Judging from CEO Elon Musk’s twofold declaration that SpaceX will now reuse its first Falcon fairings without any involvement from Mr. Steven, it’s safe to say that success will sadly bring about the end of the leased fairing recovery vessel’s utility to SpaceX. However, there is a chance that this is not the case.

The fact that SpaceX is choosing to reuse a partially waterlogged fairing for the first time on an internal Starlink internet satellite launch suggests that whatever the solution may be, it may not be compatible – or at least kosher – with current industry standards. All prior reusability milestones have been tested on commercial launches after some sort of private agreement with the customers involved, including the first Falcon 9 booster reuse and the first instances of the same booster being launched for the third time. This is likely not fair to SpaceX or its excellent customers, though. The simpler explanation is that testing unproven technologies and hardware solutions on internal launches fundamentally minimizes the risk conveyed to paying customers that likely can’t afford to lose their spacecraft.

Workers process Falcon 9 B1046 after the booster’s third flawless launch and landing in seven months. (Pauline Acalin)
Double the fairings, double the fun! (Pauline Acalin)

There remains one additional explanation: SpaceX’s solution for reusing waterlogged fairings is, in fact, too immature or is an unacceptable risk of contamination for customers relative to industry standards of design. Instead, SpaceX may have chosen to build some sort of contamination resistance into the clean-slate design of its Starlink satellites, something that would be impractical to expect of customers who have spacecraft that are either already designed or built. Redesigning – let alone rebuilding – complex systems is an extremely costly endeavor. However, wide-reaching changes are far easier to implement when starting from a functionally blank page, exactly where SpaceX is with its first-generation Starlink satellites. As such, SpaceX may have decided to do just this after it realized that catching fairings could be far harder than expected and would thus remain a major bottleneck for Starlink launches if left unsolved.

Finally, it’s unclear if Musk is referring to the very first operational Starlink launch – scheduled as early as May 2019 – or an additional follow-on mission later this year. Refurbishing and reflying fairings for the first time in just one month would be an extremely impressive achievement but may also be an impractical schedule for pathfinder technology development. For now, this serves as a reminder that SpaceX’s first operational Starlink launch is scheduled one month from now.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Eric Ralph: Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.
Related Post
Disqus Comments Loading...