SpaceX’s Mr. Steven preparing for first Falcon 9 fairing catch attempt in months

SpaceX recovery vessel Mr. Steven appears to be ready for its first Falcon fairing catch attempt in more than four months. (Tom Cross)

SpaceX recovery vessel Mr. Steven has spent the last several weeks undergoing major refits – including a new net and arms – and testing the upgraded hardware in anticipation of the vessel’s first fairing catch attempt in more than four months.

Required after a mysterious anomaly saw Mr. Steven return to Port in February sans two arms and a net, the appearance of a new net and arms guarantees that SpaceX is still pursuing its current method of fairing recovery. Above all else, successfully closing the loop and catching fairings could help SpaceX dramatically ramp its launch cadence and lower costs, especially critical for the affordable launch of the company’s own Starlink satellite constellation.

The Saga of Steven

For a few months of 2019, it was entirely conceivable that SpaceX had all but given up on catching Falcon fairings, having spent the better part of 2018 without a single success during both post-launch and experimentally controlled catch attempts. Admittedly, a year may feel like a huge amount of time, but SpaceX has demonstrated just how hard the reliably successful recovery of orbital-class rocket hardware really is.

Depending on how one examines the history of Falcon 9, it took SpaceX anywhere from ~30 and ~70 months and either 7 or 9 failed recovery attempts before the first Falcon 9 booster successfully landed in December 2015. Excluding helicopter-based fairing drop tests, Mr. Steven and SpaceX’s fairing recovery team have made five attempts to catch fairings in the vessel’s net after Falcon 9 launches. All have been unsuccessful, with the closest miss reportedly landing in the Pacific Ocean just 50 meters away from Mr. Steven’s massive net.

In January 2019, Mr. Steven sailed ~8000 km (5000 mi) from Port of Los Angeles to Port Canaveral, passing through the Panama Canal. For unknown reasons, during a trip out to sea to catch a Falcon 9 fairing in February, Mr. Steven abruptly turned around early and arrived in port missing two of four arms, four of eight booms, and the entirety of its custom net. The remaining arms/booms were removed and the vessel spent roughly three months docked with just a handful of excursions.

In late May, technicians rapidly installed new arms and booms, as well as a new (and blue) net, bringing about the end of months of inactivity. Mr. Steven has yet to venture beyond the safety of Port Canaveral since its new ‘catcher’s mitt’ was installed, but SpaceX has been testing the new setup by repeatedly lowering a Falcon fairing half into the net. It’s too early to raise expectations but it seems plausible that the iconic recovery vessel will be ready to attempt its first fairing catch in ~4 months as part of Falcon Heavy’s next scheduled launch, currently NET June 22.

A challenger approaches…

Although Mr. Steven’s prospects look better than they have in months, SpaceX’s fairing recovery engineers and technicians have not been sitting on their hands. Begun as a check against the growing possibility that reliably catching fairings in a (relatively) small net is just too difficult to be worth it, SpaceX has been analyzing methods of reusing fairings without Mr. Steven. Most notably, despite the failure to catch fairings out of the air, the fairing halves themselves – relying on GPS-guided parafoils – have proven to be capable of reliably performing gentle landings on the ocean surface.

This consistently leaves the fairings intact and floating on the ocean but at the cost of partial saltwater immersion and exposure to surface-level sea spray and waves. At least in today’s era of highly complex large satellites, customers typically demand that payload fairings (like Falcon 9’s) offer a clean room-quality environment once the satellite is encapsulated inside. Sea water is full of salt, organic molecules, and water, all three of which do not get along well with extremely sensitive electronics. The whole purpose of recovering and reusing fairings is to make their reuse more efficient and less expensive than simply building a new fairing. The task of cleaning composite structures to clean room-standards after salt water exposure and immersion tends to be less than friendly to both aspirations.

According to SpaceX CEO Elon Musk, however, that challenge may be distinctly solvable and could even be easier than the Mr. Steven approach. After Falcon Heavy’s commercial Arabsat 6A launch debut in April 2019, Musk again confirmed that SpaceX would be ready to test that alternate method of fairing reuse very soon and plans to do so on an “internal” (i.e. Starlink) launch later this year. As noted below, this is helped by the fact that SpaceX’s internally-developed Starlink satellites apparently have no need for the acoustic insulation panels that normally protect sensitive spacecraft from the brutal acoustic environment produced by rockets while still in Earth’s atmosphere.

For fairing reusability, the lack of those panels is just one less thing to have to worry about cleaning or replacing. Intriguingly, it’s easy to imagine that – much like SpaceX has apparently designed Starlink satellites to be resistant to intense acoustic environments – the company could have also required that they be tough enough to tolerate a less-than-pristine fairing environment. With that approach, SpaceX could continue to build new fairings for every customer launch, entirely amortizing their production cost before transferring the ‘dirty’, flight-proven fairings to internal Starlink launches.

In essence, SpaceX’s customers would quite literally be paying the company to build the very Falcon 9 boosters and fairings it will ultimately use to launch its massive Starlink constellation, requiring hundreds of launches over the next decade. The faster and more efficiently SpaceX can build and launch Starlink, the faster it can develop Starship/Super Heavy and entirely transcend any concerns of salty fairings (let alone expendable upper stages). But in the meantime, Mr. Steven will return to his catching duties and SpaceX will continue to attempt to reuse payload fairings.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Eric Ralph: Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.
Related Post
Disqus Comments Loading...