News
DeepSpace: Firefly set for smallsat industry’s second place trophy, Rocket Lab leads the pack
This is a free preview of DeepSpace, Teslarati’s new member-only weekly newsletter. Each week, I’ll be taking a deep-dive into the most exciting developments in commercial space, from satellites and rockets to everything in between. Sign up for Teslarati’s newsletters here to receive a preview of our membership program.
In the race to a field dedicated smallsat launch vehicles, New Zealand startup Rocket Lab has already won first place, a fact that has been discussed several times in past Deep Space issues. After completing its first launch of 2019 on March 28th, Rocket Lab’s Electron rocket is ready for another mission as early as May 4th, a good sign for the company’s planned monthly launch cadence.
Despite Rocket Lab’s major success, there is plenty of room for additional competitors and/or complementary vehicles. Electron’s maximum payload hovers around ~225 kg (500 lb) to low Earth orbit (LEO), limiting its usefulness for any payloads that are larger than truly tiny satellites or in need of higher orbits. Also discussed on DeepSpace, there are 10+ serious startups with funding and hardware in work attempting to build said smallsat launch vehicles, ranging from the extremely tiny (Vector: 60 kg to LEO) to much larger rockets from companies like Relativity, ABL Space, and more. Firefly Space, however, is the startup that has arguably broken away from the pack in the last few months, firmly setting itself up to be second in line behind Rocket Lab.
Build, test, qualify
- Firefly’s major leaps forward came in December 2018 and then April 2019, both related to testing the completed upper stage of the company’s Alpha rocket.
- In December, the upper stage ignited for the first time. In April, the same upper stage successfully performed a mission-duration static fire that lasted a full 300 seconds (five minutes), the same length required for a rocket to reach orbit after separating from Alpha’s first stage.
- For any launch vehicle development program, the first successful mission-duration test fire of an integrated rocket stage is arguably one of the most important milestones, second only to the same hardware’s inaugural launch.
- Simultaneously, Firefly began integrated testing of the thrust section and Reaver engines that will be the basis of Alpha’s first stage. The rocket’s Lightning second stage engine has been tested extensively at this point in development, although the stage’s lone engine produces a maximum of ~70 kN (~16,000 lbf) of thrust.
- The booster’s four Reaver engines will each produce ~170 kN (55,000 lbf) of thrust, around three times as much as Lightning. Alpha’s second stage is critical, but its first stage is arguably far more complex.
- Despite the relative power differential, it’s still worth noting that Alpha’s entire first stage (736 kN/166,000 lbf) will be significantly less powerful than a single one of Falcon 9’s nine Merlin 1D engines (941 kN/212,000 lbf).
- Although Alpha is far smaller than rockets like Falcon 9 or Atlas V, it will nominally be capable of launching 1000 kg to an altitude of 200 km (LEO) or ~650 kg to a 500-km sun-synchronous orbit (SSO). This translates to around 4.2X the performance of Rocket Lab’s Electron at 2.5X the cost per launch ($15M vs $6M).
- Assuming no payload capacity is wasted, Alpha could thus be almost 50% cheaper than Electron when judged by cost per kilogram to orbit.
- Of course, this comparison ignores the fact that Firefly will have to far more heavily rely on booking co-passenger satellites to keep Alpha launch prices competitive with Electron.
- If exactly 1000kg or 630kg of cargo can’t be booked each launch, the expendable Alpha’s $15M launch cost will be distributed over less payload, raising costs for each customer. In other words, the competitive advantages of Alpha are almost entirely associated with its ability to launch payloads outside of Electron’s capabilities, as are its potential weaknesses.

Firefly Alpha’s upper stage qualification article (top) and a comparison of a variety of launch vehicles. (Teslarati)
The sweet spot
- In theory, Firefly Alpha’s could find itself in a relatively sweet spot, where the rocket’s launch costs are not so high that dedicated rideshare missions become intractable (i.e. Spaceflight’s SSO-A launch on Falcon 9) but its payload performance is still good enough to provide access to a huge swath of the space launch market.
- Firefly also has plans to develop a heavier launch vehicle based on Alpha, known as Beta. Conceptually equivalent to SpaceX’s Falcon Heavy, Beta would use three Alpha boosters and a significantly upgraded second stage and would be able to launch 4000 kg to LEO or 3000 kg to SSO.
- Regardless of Firefly’s grander aspirations, Alpha is poised to capitalize on the simple fact that it will be the second commercially viable smallsat launch vehicle to begin operations. Alpha’s first orbital launch attempt could occur as early as December 2019, although slips into early 2020 are to be expected.
- At that point, Rocket Lab’s Electron will be the only serious competition on the market. Relativity’s Terran and ABL Space’s RS-1 rockets plan to offer a competitive ~1250 kg to LEO or ~900 kg to SSO, but their launch debuts are tentatively scheduled no earlier than late 2020.
- If Alpha’s development continues smoothly, Firefly could easily have a solid 12-month head start over its similarly-sized competitors,
- Up next for Alpha is a similar campaign of tests focused on the first integrated booster, including tests fires and an eventual mission-duration qualification test.
Mission Updates
- SpaceX’s CRS-17 Cargo Dragon resupply mission has slipped an additional four days from April 30th to May 3rd (3:11 am EDT, 07:11 UTC) after the International Space Station (ISS) began suffering serious (but non-threatening) electrical issues. Additional launch delays could follow if the issue is not resolved in the next few days.
- The first operational Starlink launch remains firmly on track for NET mid-May. According to SpaceX, all Flight 1 satellites are already in Florida, while the FCC approved the company’s modified constellation license – permitting Starlink operations after launch – on April 26th.
- Due to CRS-17’s launch delays, the availability of SpaceX’s LC-40 pad will now likely be the main limiting factor for the Starlink-1 launch date.
- SpaceX’s second West Coast launch of 2019 – carrying Canada’s Radarsat Constellation – is now expected to occur no earlier than mid-June and will reuse Falcon 9 B1051.
- SpaceX’s launch of Spacecom’s Amos-17 spacecraft is now scheduled no earlier than July. Falcon Heavy Flight 3 is tentatively scheduled for launch as early as June 22 – all three boosters should be on site in Florida within the next week or two.
Photo of the Week:

(SpaceX)
The third Falcon Heavy center core – believed to be B1057 – was spotted eastbound in Arizona on April 16th. On April 26th, SpaceX confirmed that the booster completed its acceptance static fire test at the company’s McGregor, TX facilities, a sure sign that all of Falcon Heavy Flight 3’s major components should be in Florida within the next few weeks.
We’ll see you next week.
Not a member? Become a member today to receive DeepSpace each week!
News
Tesla arsonist who burned Cybertruck sees end of FAFO journey
The man has now reached the “Find Out” stage.
A Mesa, Arizona man has been sentenced to five years in federal prison for setting fire to a Tesla location and vehicle in a politically motivated arson attack, federal prosecutors have stated.
The April 2025 incident destroyed a Tesla Cybertruck, endangered first responders, and triggered mandatory sentencing under federal arson laws.
A five-year sentence
U.S. District Judge Diane J. Humetewa sentenced Ian William Moses, 35, of Mesa, Arizona, to 5 years in prison followed by 3 years of supervised release for maliciously damaging property and vehicles by means of fire. Moses pleaded guilty in October to all five counts brought by a federal grand jury. Restitution will be determined at a hearing scheduled for April 13, 2026.
As per court records, surveillance footage showed Moses arriving at a Tesla store in Mesa shortly before 2 a.m. on April 28, 2025, carrying a gasoline can and backpack. Investigators stated that he placed fire starter logs near the building, poured gasoline on the structure and three vehicles, and ignited the fire. The blaze destroyed a Tesla Cybertruck. Moses fled the scene on a bicycle and was arrested by Mesa police about a quarter mile away, roughly an hour later.
Authorities said Moses was still wearing the same clothing seen on camera at the time of his arrest and was carrying a hand-drawn map marking the dealership’s location. Moses also painted the word “Theif” on the walls of the Tesla location, prompting jokes from social media users and Tesla community members.
The “Finding Out” stage
U.S. Attorney Timothy Courchaine noted that Moses’ sentence reflects the gravity of his crime. He also highlighted that arson is never acceptable.
“Arson can never be an acceptable part of American politics. Mr. Moses’ actions endangered the public and first responders and could have easily turned deadly. This five-year sentence reflects the gravity of these crimes and makes clear that politically fueled attacks on Arizona’s communities and businesses will be met with full accountability.”
Maricopa County Attorney Rachel Mitchell echoed the same sentiments, stating that regardless of Moses’ sentiments towards Elon Musk, his actions are not defensible.
“This sentence sends a clear message: violence and intimidation have no place in our community. Setting fire to a business in retaliation for political or personal grievances is not protest, it is a crime. Our community deserves to feel safe, and this sentence underscores that Maricopa County will not tolerate political violence in any form.”
News
Tesla says its Texas lithium refinery is now operational and unlike anything in North America
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
A first-of-its-kind lithium refining process
In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.
According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.
Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted.
Musk calls the facility the largest lithium refinery in America
The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational.
Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”
By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.



