Connect with us

News

Tesla owner explains Autopilot behavior at Model X accident scene

[Credit: Privater/YouTube]

Published

on

A Tesla owner recently shared a theory on factors that might have led up to the fatal Model X accident near Mountain View, CA, on March 23. Driving on the same stretch of road on Autopilot, the Tesla owner observed that there were deviations on the street’s markings and repair cuts — things which might have caused the electric car’s sensors to misread the highway’s lanes.

The 36-second clip was uploaded and shared on YouTube by Privater, who included annotations to the video highlighting his observations. At the 0:05-second mark on the clip, the Tesla owner noted that the markings on the road deviated from their original line due to the beginning of a repair cut. Further into the street (0:12 into the clip), Privater noted that the repair cuts in the road became very prominent. This could have confused Autopilot into thinking that it was a lane, especially under the direct glare of the sun.

As the barrier where the fatal Model X accident took place in came into view (0:23 into the video), Privater noted that the section of the road leading up to the crash cushion was marked by solid white lines. As could be seen in the Tesla owner’s clip, the lines were almost wide enough to be a lane, which could have also been misread by Autopilot.

The Tesla owner noted that he had been driving on the same stretch of road on Autopilot for almost two years. During that time, Privater stated that his car had misread the road marks and nearly collided with the crash cushion once or twice. He described his experiences as a response to a comment on his YouTube video.

Advertisement

A Tesla owner suggests a possible explanation for the fatal Model X accident on March 23, 2018. [Credit: Privater/YouTube]

“On the video, my car is on Autopilot. I drive the same section for nearly two years, (and) 99.9% of (the) time, I’m on Autopilot. However, this kind of error only happened to me once or twice. It’s scary enough for me to keep high alert on this intersection,” he wrote.

In an update to its first statement about the fatal Model X accident, Tesla confirmed that the ill-fated electric SUV was on Autopilot when it collided with the highway barrier. According to Tesla, the Model X driver had received several visual warnings and one audible hands-on warning earlier during the drive. The ill-fated electric SUV’s driver had also not placed his hands on the steering wheel for 6 seconds before the fatal accident. Overall, the Model X driver had about 5 seconds and 150 meters of unobstructed view to steer the car away from the highway divider before the collision occurred.

In a statement to Reuters, NTSB spokesman Chris O’Neil expressed the agency’s disagreement about the Elon Musk-led company’s decision to release information about the investigation to the public.

“The agency needs the cooperation of Tesla to decode the data the vehicle recorded. In each of our investigations involving a Tesla vehicle, Tesla has been extremely cooperative on assisting with the vehicle data. However, the NTSB is unhappy with the release of investigative information by Tesla,” O’Neil said.

As we noted in a previous report, the Model X crash was so severe because a crash attenuator, a highway safety device designed to absorb the impact of a colliding vehicle, had not been repaired by CalTrans since a 2010 Toyota Prius smashed into the safety device 11 days before the Tesla accident. In a statement to ABC7 News, Caltrans stated that the standard timeline for a crash attenuator’s repair is 7 days or 5 business days after an accident. The safety device’s repairs were delayed, however, due to storms in the area. 

Advertisement

Watch Privater’s Autopilot drive-by in the video below.

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla wins FCC approval for wireless Cybercab charging system

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.

Published

on

Credit: Tesla AI/X

Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system. 

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.

Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”

The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”

Advertisement

Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”

Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”

As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.

While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.

Advertisement

Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.

DA-26-168A1 by Simon Alvarez

Advertisement
Continue Reading

Elon Musk

Tesla posts updated FSD safety stats as owners surpass 8 billion miles

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles. 

Tesla shared the milestone in a post on its official X account.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading