News
Scientists create bio-engineered mushroom that generates renewable energy
A mushroom has been turned into a renewable energy generator using 3D printed materials and bacteria. In a paper published by the journal Nano Letters, scientists from the Stevens Institute of Technology in Hoboken, New Jersey detailed their experiment wherein strands of graphene were intertwined with cyanobacterial cells on a mushroom cap to capture 65 nanoamps of power. While this amount of power is a fraction of what would be needed to power even an LED, the initial results are promising for further development as a source of renewable energy.

What are Cyanobacteria?
Cyanobacteria, more commonly known as “blue-green algae”, are aquatic, photosynthetic bacteria that have been around for about 3.5 billion years. In addition to the energy produced by photosynthesis, cyanobacteria also produce oxygen, and their ancient ancestors are credited with producing the original oxygen in our atmosphere. These bacteria are further responsible for the origin of plants – the chloroplasts that enable photosynthesis are actually cyanobacterium living in plant cells.
When these bacteria photosynthesize, a fraction of the electrons resulting from the process are released into the surrounding environment. This process of light-induced electric current, termed “photocurrent”, is not very efficient in nature. However, the scientists in this experiment designed a 3D-printable mixture with the bacteria which made the distribution of cells more efficient for photocurrent generation and collection. After being printed onto a mushroom cap, the photocurrent produced was eight times greater than what is produced naturally.

Other Materials
Graphene is a semimetal form of carbon with electrical conductivity and a very thin size. In fact, it’s one of the thinnest materials ever produced. Due to these properties, it was chosen as the base of the 3D printed ink to collect the electricity from the cyanobacteria placed on the mushroom cap. Mushrooms were chosen first to provide a surface and nutrients for the cyanobacteria to grow, and second, they enabled the bacteria to last several days longer compared to other bases and materials.
By accessing and augmenting the unique properties of both the bacteria and nanomaterials (graphene), the scientists in this study have created a new functional bio-hybrid system. With their proof-of-concept “bionic” mushroom, they are hopeful their research can be used to expand to include more bio-hybrid applications. The bacteria themselves have several other properties which can be integrated for purposes such as glowing identification tags for medical use, toxin sensing, and fuel production.
The Future is Now
Cyanobacteria are already being used for other “green” projects besides energy generation, namely in removing CO2 from the air as a result of manufacturing. In one prominent example, Lennaeus University in Sweden has created a system of pushing gases produced in cement production through water bags full of cyanobacteria called the Algoland project. Through this process, nearly all of the CO2 is scrubbed from the emissions using the bacteria’s natural photosynthesis. Other natural limitations of the bacteria are being addressed by projects using techniques such as gene editing for more efficient CO2 conversion and rate of growth.
Elon Musk
Starlink restrictions are hitting Russian battlefield comms: report
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
SpaceX’s decision to disable unauthorized Starlink terminals in Ukraine is now being felt on the battlefield, with Ukrainian commanders reporting that Russian troops have struggled to maintain assault operations without access to the satellite network.
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
Lt. Denis Yaroslavsky, who commands a special reconnaissance unit, stated that Russian assault activity noticeably declined for several days after the shutdown. “For three to four days after the shutdown, they really reduced the assault operations,” Yaroslavsky said.
Russian units had allegedly obtained Starlink terminals through black market channels and mounted them on drones and weapons systems, despite service terms prohibiting offensive military use. Once those terminals were blocked, commanders on the Ukrainian side reported improved battlefield ratios, as noted in a New York Post report.
A Ukrainian unit commander stated that casualty imbalances widened after the cutoff. “On any given day, depending on your scale of analysis, my sector was already achieving 20:1 (casuality rate) before the shutdown, and we are an elite unit. Regular units have no problem going 5:1 or 8:1. With Starlink down, 13:1 (casualty rate) for a regular unit is easy,” the unit commander said.
The restrictions come as Russia faces heavy challenges across multiple fronts. A late January report from the Center for Strategic and International Studies estimated that more than 1.2 million Russian troops have been killed, wounded, or gone missing since February 2022.
The Washington-based Institute for the Study of War also noted that activity from Russia’s Rubikon drone unit declined after Feb. 1, suggesting communications constraints from Starlink’s restrictions may be limiting operations. “I’m sure the Russians have (alternative options), but it takes time to maximize their implementation and this (would take) at least four to six months,” Yaroslavsky noted.
Elon Musk
Tesla Korea hiring AI Chip Engineers amid push for high-volume AI chips
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
In a recent post on X, Tesla Korea announced that it is hiring AI Chip Design Engineers as part of a project aimed at developing what the company describes as the world’s highest-volume AI chips. CEO Elon Musk later amplified the initiative.
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
“This project aims to develop AI chip architecture that will achieve the highest production volume in the world in the future,” Tesla Korea wrote in its post on X.
As per Tesla Korea, those who wish to apply for the AI Chip Design Engineer post should email Ai_Chips@Tesla.com and include “the three most challenging technical problems you have solved.”
Elon Musk echoed the hiring push in a separate post. “If you’re in Korea and want to work on chip design, fabrication or AI software, join Tesla!” he wrote.
The recruitment effort in South Korea comes as Tesla accelerates development of its in-house AI chips, which power its Full Self-Driving (FSD) system, Optimus humanoid robot, and data center training infrastructure.
Tesla has been steadily expanding its silicon development teams globally. In recent months, the company has posted roles in Austin and Palo Alto for silicon module process engineers across lithography, etching, and other chip fabrication disciplines, as noted in a Benzinga report.
Tesla Korea’s hiring efforts align with the company’s long-term goal of designing and producing AI chips at massive scale. Musk has previously stated that Tesla’s future AI chips could become the highest-volume AI processors in the world.
The move also comes amid Tesla’s broader expansion into AI initiatives. The company recently committed about $2 billion into xAI as part of a Series E funding round, reinforcing its focus on artificial intelligence across vehicles, robotics, and compute infrastructure.
Elon Musk
SpaceX and xAI tapped by Pentagon for autonomous drone contest
The six-month competition was launched in January and is said to carry a $100 million award.
SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News.
The six-month competition was launched in January and is said to carry a $100 million award.
Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.
Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.
The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.
The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.
The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.
Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.