News
Livestream: Watch Elon Musk at IAC2017 as he reveals Mars plan
Here’s how you can watch a livestream of Elon Musk at IAC2017
After many months of teasers from Elon Musk and SpaceX, Musk is about to give a presentation on SpaceX’s updated Big Falcon Rocket, which is expected to one day bring humans to Mars and potentially even support a city-sized colony on the planet.
Musk’s 2016 presentation on the Interplanetary Transport System captured the imaginations of many people, kindling the sort of excitement he has always hoped to inspire. Sitting in the audience during his Guadalajara, Mexico talk, his esoteric desire to make people excited to get out of bed in the morning resonated with me.
Updated: Elon Musk teases SpaceX-built cities on the Moon and Mars
Nevertheless, we now find ourselves almost exactly one year after his 2016 talk, and many things are believed to have changed with both SpaceX’s interplanetary colonization strategy and the hardware the company expects to develop to accomplish that colonization. Musk has said that tonight’s presentation will focus on the how of SpaceX’s Mars colonization efforts, entailing a somewhat smaller booster and spaceship with “major improvements”, as well as some “unexpected applications” for the vehicle.
Major improvements & some unexpected applications to be unveiled on Friday at @IAC2017 in Australia
— Elon Musk (@elonmusk) September 25, 2017
What exactly those unexpected applications might be is fittingly unclear, if they are indeed less than obvious. More obvious applications for a fully-reusable heavy launch vehicle include
- More affordable access to orbit
- Mass launches of satellite constellations
- Off-the-shelf access to the surface of the Moon
- Space tourism in Earth orbit
- Cheaper and simpler space stations in a single launch
- Direct and rapid access to the Outer Solar System for more complex planetary exploration missions
These are just a handful of the potential uses and benefits that could be derived from a fully-reusable heavy launch vehicle like the Big Falcon Rocket (BFR). Unexpected or not, the near-Earth utility of a theoretical BFR is undeniable.
- SpaceX’s massive carbon fiber liquid oxygen tank seen testing in Northern Washington. BFR’s tankage will be 25% narrower, and thus easier to manufacture. (SpaceX)
- SpaceX’s Raptor engine seen conducting a live fire test last year. (SpaceX)
Aside from additional information on those unexpected applications, we can expect several exciting tidbits. Musk has teased new and improved videos of their Raptor rocket engine conducting live-fire tests, and we also have reason to believe that his talk will be accompanied by an equally slick and thrilling collection of renders of the updated BFR in action. Mirroring last year’s rather shocking unveiling of physical hardware development in the form of Raptor’s first test fire and a massive carbon fiber propellant tank, I personally expect to see confirmation of still more tangible hardware development.
A growing amount of recent news pointing to Boca Chica, Texas as the first launch site for SpaceX’s massive new rocket may also lead to an official statement from Musk himself either confirming or denying this, maybe accompanied by a tentative schedule for pad development. Regardless of what is revealed, tonight’s presentation is bound to be yet another exceptional opportunity to hear Musk wax poetic about SpaceX’s desire to make humanity a multiplanetary species.
We’ve embedded a livestream of Elon Musk’s upcoming presentation SpaceX IAC2017 presentation scheduled to begin at the following times:
- Friday at 2 p.m. Australian Central Standard Time
- 12:30 p.m. China Standard Time
- 6:30 a.m. Central European Standard Time
- 5:30 a.m. British Summer Time
- 12:30 a.m. Eastern Daylight Time
- Thursday at 9:30 p.m. Pacific Daylight Time
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.

