Connect with us

News

NASA picks diverse astronaut roster for SpaceX Crew Dragon 2021 mission

A artist rendering of SpaceX's Crew Dragon capsule in low Earth orbit. (Credit: SpaceX)

Published

on

With Demo-2, the final certification test flight of SpaceX’s Crew Dragon capsule nearing completion, NASA is looking ahead to future operational crewed missions. NASA previously announced that following NASA astronauts Bob Behnken and Doug Hurley’s successful return from the International Space Station (ISS) in early August, three NASA astronauts and one Japanese astronaut of the Japan Aerospace Exploration Agency (JAXA) would soon be following on their own flight to the Space Station, SpaceX’s first operational crewed flight known as “Crew-1.” This mission is tentatively scheduled to occur no earlier than Fall of 2020.

Just days ahead of Demo-2’s anticipated conclusion, NASA, along with its international partners, has announced the roster and date of SpaceX’s third operational crewed mission referred to as “Crew-2.” Like Crew-1, the Crew-2 mission will feature a diverse international roster of four astronauts. Onboard will be veteran flyers, NASA astronauts Megan McArthur and Shane Kimbrough, along with JAXA astronaut Akihiko Hoshide, and European Space Agency (ESA) astronaut Thomas Pesquet. Should everything go as planned with Crew-1, Crew Dragon’s third operational crewed flight, Crew-2, is scheduled for liftoff no earlier than the Spring of 2021.

The members of the SpaceX Crew-2 mission to the International Space Station. Pictured from left are NASA astronauts Megan McArthur and Shane Kimbrough, JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide, and ESA (European Space Agency) astronaut Thomas Pesquet. (Credits: NASA)

NASA keeps it in the family

One Crew-2 participant stands out from the rest, NASA astronaut Megan McArthur. She is a veteran NASA flyer having previously flown aboard the STS-125 space shuttle Atlantis mission in May of 2009. Although Crew-2 will be her second time to orbit, it will be her first visit to the ISS. During her first mission, she spent her time in orbit serving as a Mission Specialist servicing NASA’s Hubble Space Telescope. In 2019 she was appointed as NASA’s Deputy Chief of the Astronaut Office ISS Operations Branch, a role in which she provides support to astronauts in training and aboard the ISS.

Not only is McArthur an experienced space flyer and well-versed in mission support, but she is also married to NASA astronaut Bob Behnken. While Behnken served as Joint Operations Commander for Crew Dragon’s Demo-2 mission, McArthur was back at SpaceX headquarters in Hawthorne, CA training for her own Crew Dragon mission to the ISS.

https://twitter.com/Astro_Megan/status/1288203342250901504

McArthur was joined by her NASA and international partners Crew-2 crewmates to train at the SpaceX facility utilizing the Crew Dragon simulator. According to an interview with ESA astronaut Thomas Pesquet, the entire crew has been at various training facilities located in Texas and California presumably for weeks familiarizing themselves with Crew Dragon and ISS specific training, just as Behnken and Hurley did prior to their Demo-2 departure.

Advertisement
-->

Commercial and international crew will bring the ISS to full capacity

NASA astronaut Shane Kimbrough will fly for his third trip to orbit after having previously flown aboard space shuttle Endeavour for STS-126 and aboard a Russian Soyuz spacecraft for Expedition 49/50 in 2016. Japanese astronaut Akihiko Hoshide will be the second JAXA astronaut to fly aboard SpaceX’s Crew Dragon following Soichi Noguchi on Crew-1. ESA astronaut Thomas Pesquet will be the first European to fly aboard the Crew Dragon. It will be his second mission to orbit following a six-month-long stay aboard the ISS in 2016.

The 2021 Crew-2 mission will increase the number of ISS occupants from six to a full complement of seven. Crew-2’s four Dragon Riders will be joined by a three-member crew set to launch aboard a Russian Soyuz spacecraft. The increase of long-duration crew members will allow NASA to “effectively double the amount of science that can be conducted in space,” as stated in an official NASA Commercial Crew blog post. The Crew-2 astronauts are expected to stay aboard the orbiting outpost for six months.

Advertisement
-->

Space Reporter.

Advertisement
Comments

News

Tesla FSD v14.2.2 is getting rave reviews from drivers

So far, early testers have reported buttery-smooth drives with confident performance, even at night or on twisty roads.

Published

on

Credit: @BLKMDL3/X

Tesla Full Self-Driving (Supervised) v14.2.2 is receiving positive reviews from owners, with several drivers praising the build’s lack of hesitation during lane changes and its smoother decision-making, among others. 

The update, which started rolling out on Monday, also adds features like dynamic arrival pin adjustment. So far, early testers have reported buttery-smooth drives with confident performance, even at night or on twisty roads.

Owners highlight major improvements

Longtime Tesla owner and FSD user @BLKMDL3 shared a detailed 10-hour impression of FSD v14.2.2, noting that the system exhibited “zero lane change hesitation” and “extremely refined” lane choices. He praised Mad Max mode’s performance, stellar parking in locations including ticket dispensers, and impressive canyon runs even in dark conditions.

Fellow FSD user Dan Burkland reported an hour of FSD v14.2.2’s nighttime driving with “zero hesitations” and “buttery smooth” confidence reminiscent of Robotaxi rides in areas such as Austin, Texas. Veteran FSD user Whole Mars Catalog also demonstrated voice navigation via Grok, while Tesla owner Devin Olsen completed a nearly two-hour drive with FSD v14.2.2 in heavy traffic and rain with strong performance.

Closer to unsupervised

FSD has been receiving rave reviews, even from Tesla’s competitors. Xpeng CEO He Xiaopeng, for one, offered fresh praise for FSD v14.2 after visiting Silicon Valley. Following extended test drives of Tesla vehicles running the latest FSD software, He stated that the system has made major strides, reinforcing his view that Tesla’s approach to autonomy is indeed the proper path towards autonomy.

Advertisement
-->

According to He, Tesla’s FSD has evolved from a smooth Level 2 advanced driver assistance system into what he described as a “near-Level 4” experience in terms of capabilities. While acknowledging that areas of improvement are still present, the Xpeng CEO stated that FSD’s current iteration significantly surpasses last year’s capabilities. He also reiterated his belief that Tesla’s strategy of using the same autonomous software and hardware architecture across private vehicles and robotaxis is the right long-term approach, as it would allow users to bypass intermediate autonomy stages and move closer to Level 4 functionality.

Continue Reading

News

Elon Musk’s Grok AI to be used in U.S. War Department’s bespoke AI platform

The partnership aims to provide advanced capabilities to 3 million military and civilian personnel.

Published

on

Credit: xAI

The U.S. Department of War announced Monday an agreement with Elon Musk’s xAI to embed the company’s frontier artificial intelligence systems, powered by the Grok family of models, into the department’s bespoke AI platform GenAI.mil. 

The partnership aims to provide advanced capabilities to 3 million military and civilian personnel, with initial deployment targeted for early 2026 at Impact Level 5 (IL5) for secure handling of Controlled Unclassified Information.

xAI Integration

As noted by the War Department’s press release, GenAI.mil, its bespoke AI platform, will gain xAI for the Government’s suite of tools, which enable real-time global insights from the X platform for “decisive information advantage.” The rollout builds on xAI’s July launch of products for U.S. government customers, including federal, state, local, and national security use cases.

“Targeted for initial deployment in early 2026, this integration will allow all military and civilian personnel to use xAI’s capabilities at Impact Level 5 (IL5), enabling the secure handling of Controlled Unclassified Information (CUI) in daily workflows. Users will also gain access to real‑time global insights from the X platform, providing War Department personnel with a decisive information advantage,” the Department of War wrote in a press release. 

Strategic advantages

The deal marks another step in the Department of War’s efforts to use cutting-edge AI in its operations. xAI, for its part, highlighted that its tools can support administrative tasks at the federal, state and local levels, as well as “critical mission use cases” at the front line of military operations.

Advertisement
-->

“The War Department will continue scaling an AI ecosystem built for speed, security, and decision superiority. Newly IL5-certified capabilities will empower every aspect of the Department’s workforce, turning AI into a daily operational asset. This announcement marks another milestone in America’s AI revolution, and the War Department is driving that momentum forward,” the War Department noted.

Continue Reading

News

Tesla FSD (Supervised) v14.2.2 starts rolling out

The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.

Published

on

Credit: Grok Imagine

Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.

Key FSD v14.2.2 improvements

As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.

Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.

FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.  

Key FSD v14.2.2 release notes

Full Self-Driving (Supervised) v14.2.2 includes:

Advertisement
-->
  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
  • Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
  • Camera visibility can lead to increased attention monitoring sensitivity. 

Upcoming Improvements:

  • Overall smoothness and sentience.
  • Parking spot selection and parking quality.
Continue Reading