News
NASA picks diverse astronaut roster for SpaceX Crew Dragon 2021 mission
With Demo-2, the final certification test flight of SpaceX’s Crew Dragon capsule nearing completion, NASA is looking ahead to future operational crewed missions. NASA previously announced that following NASA astronauts Bob Behnken and Doug Hurley’s successful return from the International Space Station (ISS) in early August, three NASA astronauts and one Japanese astronaut of the Japan Aerospace Exploration Agency (JAXA) would soon be following on their own flight to the Space Station, SpaceX’s first operational crewed flight known as “Crew-1.” This mission is tentatively scheduled to occur no earlier than Fall of 2020.
Just days ahead of Demo-2’s anticipated conclusion, NASA, along with its international partners, has announced the roster and date of SpaceX’s third operational crewed mission referred to as “Crew-2.” Like Crew-1, the Crew-2 mission will feature a diverse international roster of four astronauts. Onboard will be veteran flyers, NASA astronauts Megan McArthur and Shane Kimbrough, along with JAXA astronaut Akihiko Hoshide, and European Space Agency (ESA) astronaut Thomas Pesquet. Should everything go as planned with Crew-1, Crew Dragon’s third operational crewed flight, Crew-2, is scheduled for liftoff no earlier than the Spring of 2021.

NASA keeps it in the family
One Crew-2 participant stands out from the rest, NASA astronaut Megan McArthur. She is a veteran NASA flyer having previously flown aboard the STS-125 space shuttle Atlantis mission in May of 2009. Although Crew-2 will be her second time to orbit, it will be her first visit to the ISS. During her first mission, she spent her time in orbit serving as a Mission Specialist servicing NASA’s Hubble Space Telescope. In 2019 she was appointed as NASA’s Deputy Chief of the Astronaut Office ISS Operations Branch, a role in which she provides support to astronauts in training and aboard the ISS.
Not only is McArthur an experienced space flyer and well-versed in mission support, but she is also married to NASA astronaut Bob Behnken. While Behnken served as Joint Operations Commander for Crew Dragon’s Demo-2 mission, McArthur was back at SpaceX headquarters in Hawthorne, CA training for her own Crew Dragon mission to the ISS.
https://twitter.com/Astro_Megan/status/1288203342250901504
McArthur was joined by her NASA and international partners Crew-2 crewmates to train at the SpaceX facility utilizing the Crew Dragon simulator. According to an interview with ESA astronaut Thomas Pesquet, the entire crew has been at various training facilities located in Texas and California presumably for weeks familiarizing themselves with Crew Dragon and ISS specific training, just as Behnken and Hurley did prior to their Demo-2 departure.
Looks like I'll be the first European to ever ride a Dragon into space! Training has already started at SpaceX's futuristic facilities. Stay tuned for more updates… and wait, how do you install the "launch" app on these giant tablet-screens? 😅😉🙃 pic.twitter.com/wD7zOf7EAl
— Thomas Pesquet (@Thom_astro) July 28, 2020
Commercial and international crew will bring the ISS to full capacity
NASA astronaut Shane Kimbrough will fly for his third trip to orbit after having previously flown aboard space shuttle Endeavour for STS-126 and aboard a Russian Soyuz spacecraft for Expedition 49/50 in 2016. Japanese astronaut Akihiko Hoshide will be the second JAXA astronaut to fly aboard SpaceX’s Crew Dragon following Soichi Noguchi on Crew-1. ESA astronaut Thomas Pesquet will be the first European to fly aboard the Crew Dragon. It will be his second mission to orbit following a six-month-long stay aboard the ISS in 2016.
The 2021 Crew-2 mission will increase the number of ISS occupants from six to a full complement of seven. Crew-2’s four Dragon Riders will be joined by a three-member crew set to launch aboard a Russian Soyuz spacecraft. The increase of long-duration crew members will allow NASA to “effectively double the amount of science that can be conducted in space,” as stated in an official NASA Commercial Crew blog post. The Crew-2 astronauts are expected to stay aboard the orbiting outpost for six months.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
