News
NASA’s SLS Moon rocket is almost ready for its first trip to the launch pad
NASA says its first complete Space Launch System (SLS) rocket is less than a week away from its first rollout and the start of its first East Coast ‘wet dress rehearsal’.
Teams have begun retracting work platforms surrounding the fully stacked rocket, slowly revealing the launch vehicle assigned to Artemis 1 – a much anticipated and extensively delayed uncrewed test flight of the SLS rocket and Orion spacecraft. Since April 2021, SLS and Orion have been slowly but surely assembled within the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Cape Canaveral, Florida.
Preparing the rocket for the launch pad has required an arduous and complex series of tests meant to ensure that the vehicle is ready for the stresses it will experience and the operations it will perform before and during launch. The rollout is expected to begin around 5 pm EST (22:00 UTC) on Thursday, March 17th and, if all goes well, it should take the giant crawler tasked with carrying the rocket and ‘mobile launch platform’ about 12 hours to carry them to Launch Complex 39B (LC-39B or Pad 39B). The first hour of the rollout will extricate the rocket and its mobile launch tower from the VAB, followed by an 11-hour journey to the pad.
NASA says SLS will spend around one month at Pad 39B, during which it will undergo expensive testing required to ensure its launch readiness. After two weeks on the pad, SLS will have its tanks filled with liquid hydrogen (LH2) and liquid oxygen (LOx) propellant and run through a simulated countdown in a process known as a wet dress rehearsal (WDR). Representatives of the Artemis-1 mission indicate “the countdown will end at about [T-minus 9 seconds], which is just moments before the rocket’s four RS-25 engines would ignite [before] an actual launch.” By allowing the countdown to run so low, test teams are able to check all interfaces (aside from the rocket’s RS-25 engines) that must be carefully coordinated during launch.
Once the wet-dress is complete, SLS will be rolled back into the VAB for final launch preparations, including the identification and repair of any issues found during wet-dress, final Orion spacecraft work, and flight software updates. After SLS’ return to the VAB, NASA expects that final work to take one month to complete. However, NASA officials admit that there is still a lot of work to be done to SLS before launch, and almost every aspect of the space agency’s work on the rocket over the last two and a half years has run into extensive delays.
An official launch date has not been chosen by NASA, as delays continue to make setting a specific date impractical. Tom Whitmeyer, NASA deputy associate administrator for exploration systems development, has indicated that a launch in April is no longer feasible. “We’re still evaluating the tail end of the May window,” he said, which runs from May 7 to 21. Future launch windows, governed by orbital mechanics and other mission constraints like ensuring that Orion is recovered in daylight, are June 6 to 16 and June 29 to July 12, with a “cutout” of July 2 to 4, when a launch would not be possible.
The Artemis-1 mission will be the first uncrewed integrated flight test of NASA’s Orion spacecraft and Space Launch System rocket. The SLS rocket is designed for missions beyond low-Earth orbit carrying crew or cargo to the Moon and beyond. At liftoff, it will weigh approximately six million pounds (~2700 tons) and produce around 8.8 million pounds (~4000 tons) of thrust.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
