News
SpaceX’s next step towards airplane-like Falcon 9 reusability expected in 2018
Speaking at an impromptu IAC 2018 talk, Vice President of Build and Flight Reliability Hans Koenigsmann confirmed earlier this month that SpaceX is aiming to conduct its first triple reuse of a Falcon 9 booster before the year is out.
While not entirely confident on the specific mission it would end up flying on, Koenigsmann floated the company’s next Vandenberg, CA launch – Spaceflight Industry’s SSO-A rideshare – as a prime candidate, tentatively targeting November 19th.

As of November 19th, only two Falcon 9 Block 5 boosters will be candidates for a third reuse – B1046 and B1048. Falcon 9 B1048 launched for the second time just days ago, placing Earth observation satellite SAOCOM 1A in orbit before performing the first return-to-launch-site (RTLS) recovery on the West Coast, also marking the debut of SpaceX’s long-dormant LZ-4 landing zone. Aside from playing a role in one of the most spectacular launch-related light shows ever created, B1048 is noteworthy for being SpaceX’s second-fastest Falcon 9 booster turnaround, taking just 74 days to go from its first launch and landing to its second operational use.
While B1046 – launched first on May 11th and again on August 7th – will have had more than three months of potential refurbishment by SSO-A’s Nov. 19 launch target, both of its two launches involved relatively high-energy profiles with heavy payloads, resulting in higher (and thus more damaging) heating during reentry. B1048, on the other hand, has launched a heavy set of 10 Iridium NEXT satellites into a low-energy orbit and then launched the much lighter SAOCOM 1A spacecraft into an equally low orbit, translating to much more forgiving reentries and thus much easier refurbishment.
Later at IAC 2018, Hans spoke in more detail about the leading challenges facing SpaceX in this relatively mature stage of reusable rocketry optimization. Most notably, he seemed to imply that the most difficult aspect of refurbishing Falcon 9 boosters was damage caused to its nine Merlin 1D engines while taking the brunt of Falcon 9’s reentry inertia, not hugely surprising given the awkward geometry and sheer force behind a booster traveling more than 2000 meters per second.
- Falcon 9 Block 5 completed its first launch on May 11, carrying the Bangabandhu-1 communications satellite to geostationary transfer orbit. (Tom Cross)
- It’s currently unclear whether B1046 or B1048 will become the first SpaceX rocket to fly three times. (Tom Cross)
- Falcon 9 B1048 returned to Port of Los Angeles aboard drone ship Just Read The Instructions after its first launch. July 27. (Pauline Acalin)
- Falcon 9 B1048.2 landed at LZ-4 after its second successful launch. (SpaceX)
It’s possible that SpaceX will set B1046 up as the pathfinder for all future reusability milestones, including the 3rd, 4th, and 5th booster flights and beyond. However, B1048 may well be in better condition, is already directly stationed at its refurbishment facility, and will have another relatively low-energy launch ahead of it if assigned to SSO-A. Critically, flying for the third time on SSO-A – as few as 43 days after its second orbital launch – will require B1048 to break SpaceX’s record for faster Falcon 9 booster turnaround by more than 50%, despite the fact that it would have two full operational missions under its belt.
It may sound more mundane than other crowning SpaceX achievements, particularly with the focus on numbers that might seem arbitrary and unimportant at first glance, but it’s actually difficult to overstate just how important the third reuse of a Falcon 9 booster is, particularly if that pathfinder happens to break refurbishment records at the same time.
SpaceX’s ultimate goal is to build and launch rockets with airplane-like reusability and reliability, eventually flying boosters and other components upwards of 100-1000 times each, and the jump from two flights per core to three will be the best evidence yet that the company is making rapid progress in that direction.
For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.



