News
SpaceX’s Crew Dragon suffers catastrophic explosion during static fire test
Six weeks after the spacecraft completed its orbital launch debut, SpaceX’s first flight-proven Crew Dragon capsule suffered a catastrophic explosion seconds before a planned SuperDraco test fire.
In the last nine years, SpaceX has successfully built, tested, launched, and recovered Cargo and Crew Dragons 18 times, including five instances of Cargo Dragon capsule reuse, all with minor or no issues. The April 20th event is the first time in the known history of SpaceX’s orbital spacecraft program that a vehicle – in this case, the first completed and flight-proven Crew Dragon capsule – has suffered a total failure. Regardless of the accident investigation’s ultimate conclusions, the road ahead of Crew Dragon’s first crewed test flight has become far more arduous.
According to information acquired by NASASpaceflight.com, SpaceX was in the middle of a series of static fire tests meant to verify that the flight-proven capsule was in good working order after Crew Dragon’s inaugural mission to orbit. The spacecraft was to be tested near SpaceX’s Cape Canaveral Landing Zone facilities, where the company has a small but dedicated space for Dragon tests. Crew Dragon C201’s testing began earlier on Saturday, successfully firing up its smaller Draco maneuvering thrusters. This transitioned into a planned SuperDraco ignition, what would have been the first such integrated test fire for capsule C201.
SpaceX planned to rapidly reuse Crew Dragon C201 for an upcoming in-flight abort (IFA) test, in which the spacecraft would be required to successfully escape from Falcon 9 at the point of peak aerodynamic stress (Max Q). Based on a leaked video of the failure, one or several faults in Crew Dragon’s design and/or build led to a near-instantaneous explosion that destroyed the spacecraft. Sound in the background seems to indicate that the explosion occurred several seconds before the planned SuperDraco ignition, a major concern given their pressure-fed design.
As pressure-fed rocket engines specifically designed to be the basis of a launch escape system, Crew Dragon and its SuperDraco thrusters are meant to be ready to ignite at a millisecond’s notice once they are armed in a flight-ready configuration. It’s safe to say that ten seconds away from a specifically planned ignition is one of those moments, although there is a limited chance that SpaceX’s static fire procedures intentionally diverge from an abort-triggered ignition. Regardless, the fact that Crew Dragon was destroyed before the ignition of its SuperDracos is not an encouraging sign.
Instead of a problem with its high-performance abort thrusters, it can be tentatively concluded that Crew Dragon’s explosion originated in its fuel tanks or propellant plumbing. Such an immediate and energetic explosion points more towards a total failure of propellant lines or valves (or their avionics), while another – and potentially far more concerning – cause could be one of Crew Dragon’s pressure vessels. In a space as enclosed as a Dragon capsule, the rupture of a pressure vessel could trigger a chain reaction of pressure vessel failures, freeing both oxidizer (NTO) and fuel (MMH). Known as hypergolic propellant, NTO and MMH ignite immediately (and violently so) when mixed.
It’s quite possible that the accident investigation to follow will be SpaceX’s most difficult and trying yet. Regardless of the specific cause, the footage of Crew Dragon C201’s demise does not support any positive conclusions about the fate of astronauts or passengers, had they been aboard during the violent explosion. Seemingly triggered in some way by the very system meant to safely extricate Crew Dragon and its astronauts from a failing Falcon 9 rocket, major work will need to be done to prove to NASA that the spacecraft is safe. Sadly, Boeing’s Starliner spacecraft – funded in parallel with Crew Dragon under NASA’s Commercial Crew Program – suffered a far less severe but no less significant failure during a static fire test of its own abort thrusters. Boeing was forced to remove the impacted hardware from its flight plans to extensively clean, repair, and rework the service module.
NASA is now faced with the fact that both of the spacecraft it supported with CCP have exhibited major failures related to their launch escape systems. Crew Dragon’s catastrophic explosion comes as a particularly extreme surprise given how extensively SpaceX has already tested the SuperDraco engines and plumbing, as well as the successful completion of the spacecraft’s launch debut. In the process of DM-1 launch preparations, Crew Dragon likely spent a minimum of 80 minutes with its SuperDraco thrusters and propellant systems primed and ready to abort at any second, apparently without a single mildly-concerning issue.
Godspeed to SpaceX and NASA as they enter into this challenging and unplanned failure investigation.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Starlink restrictions are hitting Russian battlefield comms: report
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
SpaceX’s decision to disable unauthorized Starlink terminals in Ukraine is now being felt on the battlefield, with Ukrainian commanders reporting that Russian troops have struggled to maintain assault operations without access to the satellite network.
The restrictions have reportedly disrupted Moscow’s drone coordination and frontline communications.
Lt. Denis Yaroslavsky, who commands a special reconnaissance unit, stated that Russian assault activity noticeably declined for several days after the shutdown. “For three to four days after the shutdown, they really reduced the assault operations,” Yaroslavsky said.
Russian units had allegedly obtained Starlink terminals through black market channels and mounted them on drones and weapons systems, despite service terms prohibiting offensive military use. Once those terminals were blocked, commanders on the Ukrainian side reported improved battlefield ratios, as noted in a New York Post report.
A Ukrainian unit commander stated that casualty imbalances widened after the cutoff. “On any given day, depending on your scale of analysis, my sector was already achieving 20:1 (casuality rate) before the shutdown, and we are an elite unit. Regular units have no problem going 5:1 or 8:1. With Starlink down, 13:1 (casualty rate) for a regular unit is easy,” the unit commander said.
The restrictions come as Russia faces heavy challenges across multiple fronts. A late January report from the Center for Strategic and International Studies estimated that more than 1.2 million Russian troops have been killed, wounded, or gone missing since February 2022.
The Washington-based Institute for the Study of War also noted that activity from Russia’s Rubikon drone unit declined after Feb. 1, suggesting communications constraints from Starlink’s restrictions may be limiting operations. “I’m sure the Russians have (alternative options), but it takes time to maximize their implementation and this (would take) at least four to six months,” Yaroslavsky noted.
Elon Musk
Tesla Korea hiring AI Chip Engineers amid push for high-volume AI chips
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
In a recent post on X, Tesla Korea announced that it is hiring AI Chip Design Engineers as part of a project aimed at developing what the company describes as the world’s highest-volume AI chips. CEO Elon Musk later amplified the initiative.
Tesla Korea stated that it is seeking “talented individuals to join in developing the world’s highest-level mass-produced AI chips.”
“This project aims to develop AI chip architecture that will achieve the highest production volume in the world in the future,” Tesla Korea wrote in its post on X.
As per Tesla Korea, those who wish to apply for the AI Chip Design Engineer post should email Ai_Chips@Tesla.com and include “the three most challenging technical problems you have solved.”
Elon Musk echoed the hiring push in a separate post. “If you’re in Korea and want to work on chip design, fabrication or AI software, join Tesla!” he wrote.
The recruitment effort in South Korea comes as Tesla accelerates development of its in-house AI chips, which power its Full Self-Driving (FSD) system, Optimus humanoid robot, and data center training infrastructure.
Tesla has been steadily expanding its silicon development teams globally. In recent months, the company has posted roles in Austin and Palo Alto for silicon module process engineers across lithography, etching, and other chip fabrication disciplines, as noted in a Benzinga report.
Tesla Korea’s hiring efforts align with the company’s long-term goal of designing and producing AI chips at massive scale. Musk has previously stated that Tesla’s future AI chips could become the highest-volume AI processors in the world.
The move also comes amid Tesla’s broader expansion into AI initiatives. The company recently committed about $2 billion into xAI as part of a Series E funding round, reinforcing its focus on artificial intelligence across vehicles, robotics, and compute infrastructure.
Elon Musk
SpaceX and xAI tapped by Pentagon for autonomous drone contest
The six-month competition was launched in January and is said to carry a $100 million award.
SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News.
The six-month competition was launched in January and is said to carry a $100 million award.
Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.
Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.
The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.
The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.
The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.
Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.