Connect with us

News

SpaceX's Elon Musk works through holidays on Starship's "most difficult part"

SpaceX CEO Elon Musk is working with the company's Boca Chica team to get Starship's "most difficult part" ready for flight. (NASASpaceflight - bocachicagal)

Published

on

SpaceX CEO Elon Musk says he has been working through the holidays at the company’s Boca Chica facilities to get Starship’s “most difficult part” ready for the next-generation spacecraft’s next prototype and flight tests.

Known as tank domes or bulkheads, Musk says that the hardware is the most difficult part of building and assembly Starship’s primary structure, referring to the steel engine section, tanks, and pointed nose that comprise most of the spaceship’s body. Starship’s primary structure must stand up to the rigors of all aspects of flight, including highly-pressurized propellant tanks, extreme G-forces during launches, orbital reentry, and more.

It was never officially determined whether the failure was intentional or not but during the first Starship prototype’s (Mk1) last test campaign, the vehicle experience an overpressure event while being filled with liquid oxygen or nitrogen. Localized to the weld connecting the upper tank dome to Starship’s cylindrical tank section, the dome essentially sheared off at the weld and launched hundreds of feet into the air, sending a shockwave through the vehicle that crumpled many of its steel structures as if they were aluminum foil.

It’s likely that Starship Mk1’s failure was an intentional overpressure event, meaning that SpaceX may have purposely pressed the vehicle’s tanks beyond their design limits to determine how structurally sound they were. What is less clear is whether the rocket burst before or after reaching its theoretical design limit.

For reference, SpaceX’s Falcon 9 rocket operates with its fuel and oxygen tanks pressurized to about 50 psi (3.5 atm) with localized pressures likely doubling or tripling near the bottom of both tanks during the first minute or two of launch. Some amateur back-of-the-envelope calculations from videos of Starship Mk1’s burst event suggest that it was pressurized to at least 60-75 psi (4-5 atm) at its upper tank dome, meaning that the pressure on its two lower domes and tank walls would have been even higher. If correct, those unofficial figures mean that Mk1 actually performed quite well considering the ramshackle facilities and unprecedentedly spartan methods used to fabricate and assemble it.

Advertisement

As such, Musk likely considers Starship’s tank domes the “most difficult part of [its] primary structure” in large part because of how difficult it is to make giant propellant tank domes simultaneously light and strong. Musk has previously implied that Starship Mk1 was more 200 tons (450,000 lb) empty while the ultimate goal for the spacecraft’s empty weight is closer to 120 tons, and a large portion of that weight savings will likely have to come from making its tank domes as light as possible.

In line with that educated speculation, the last month or so of SpaceX’s Starship work in Boca Chica, Texas has been marked by a distinct focus on building tank domes. In fact, Musk himself tweeted that he had worked all night with SpaceX engineers in Boca Chica in a bid to get dome production ready for Starship’s Mk3 prototype, the first Super Heavy hardware, and many more rockets to come.

Prior to Musk’s tweet, a Starship tank dome was actually shipped all the way from Florida to Texas and arrived earlier this month. Meanwhile, technicians have been briskly building up an additional dome using what appears to be a different method of integration involving new parts. SpaceX is currently attempting to weld Starship’s tank domes together from several dozen pre-formed sheets of stainless steel.

The sheets of steel assembled into the dome Musk showed on December 27th likely arrived in Boca Chica on December 13th, implying that SpaceX has managed to complete the majority of the first dome prototype – using a new process – in barely two weeks.

New sections of a tank dome arrived on December 13th. (NASASpaceflight – bocachicagal)
Technicians lifted the dome Musk was working on on December 28th, implying that it is more or less structurally complete. (NASASpaceflight – bocachicagal)
Hours after lifting the newest dome, SpaceX began assembling the next one. (NASASpaceflight – bocachicagal)
Starship’s third Boca Chica tank dome was spotted in-work on December 28th. (NASASpaceflight – bocachicagal)

After SpaceX lifted the partially-completed dome off one of its custom assembly jigs, workers almost instantly began staging new sections of steel, beginning the process of integrating yet another tank dome – now likely the fourth on-site in Boca Chica. Meanwhile, at a nearby section of SpaceX’s Boca Chica production facilities, yet another dome was visible on the 28th. In short, SpaceX should soon have more than enough tank domes to complete the next Starship prototype – said to be a significantly improved and refined design compared to Mk1.

Known as Starship Mk3 (or Starship SN01), Musk says that the rocket – currently just a miscellaneous collection of separate parts – could (“hopefully”) be ready for its first flight as soon as February or March 2020.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

This signature Tesla feature is facing a ban in one of its biggest markets

The report indicates that Chinese government agencies have concerns “about failure rates and safety issues with the flush design.”

Published

on

A signature Tesla feature is under fire in one of the company’s largest markets, as regulators in one EV hot spot are mulling the potential ban of a design the automaker implemented on some of its vehicles.

Tesla pioneered the pop-out door handle on its Model S back in 2012, and CEO Elon Musk felt the self-presenting design was a great way to feel like “you’re part of the future.”

It is something that is still present on current Model S designs, while other vehicles in the Tesla lineup have a variety of handle aesthetics.

How to repair your Tesla Model S Door handle (DIY Kit)

According to Chinese media outlet Mingjing Pro, the company, along with others using similar technology, is facing scrutiny on the design as regulators consider a ban on the mechanism. These restrictions would impact other companies that have utilized pop-out handles on their own designs; Tesla would not be the only company forced to make changes.

The report indicates that Chinese government agencies have concerns “about failure rates and safety issues with the flush design.”

However, EVs are designed to be as aerodynamically efficient as possible, which is the main reason for this design. It is also the reason that many EVs utilize wheel covers, and sleek and flowing shapes.

However, the Chinese government is not convinced, as they stated the aerodynamic improvements are “minimal,” and safety issues are “significantly elevated,” according to The Independent.

The issue also seems to be focused on how effective the handle design is. According to data, one EV manufacturer, which was not specified in the report, has 12 percent of its total repairs are door handle failure fixes.

There are also concerns about the handles short-circuiting, leaving passengers trapped within cars. Tesla has implemented emergency latch releases in its vehicles that would prevent passengers from getting stuck in their cars in cases of electric malfunctions or failures.

However, evidence from the Chinese Insurance Automotive Technology Research Institute (C-IASI) suggests that 33 percent of door handles using this design fail to function after a side impact.

Obviously, Tesla and other automakers could introduce an alternative design to those vehicles that are affected by the potential restrictions China intends to impose. The regulation would take effect in July 2027.

Continue Reading

News

Tesla is bailing out Canadian automakers once again: here’s how

Published

on

(Credit: Tesla)

Tesla is bailing out Canadian automakers once again, as some companies in the country are consistently failing to reach mandated minimum sales targets for emission-free vehicles.

Many countries and regions across the world have enacted mandates that require car companies to sell a certain percentage of electric powertrains each year in an effort to make sustainable transportation more popular.

These mandates are specifically to help reduce the environmental impacts of gas-powered cars. In Canada, 20 percent of new car sales in the 2026 model year must be of an emissions-free powertrain. This number will eventually increase to 100 percent of sales by 2030, or else automakers will pay a substantial fine — $20,000 per vehicle.

There is a way companies can avoid fines, and it involves purchasing credits from companies that have a surplus of emissions-free sales.

Tesla is the only company with this surplus, so it will be bailing out a significant number of other automakers that have fallen short of reaching their emissions targets.

Brian Kingston, CEO of the Canadian Vehicle Manufacturers’ Association, said (via Yahoo):

“The only manufacturer that would have a surplus of credits is Tesla, because all they do is sell electric vehicles. A manufacturer has to enter into an agreement with them to purchase credits to help them meet the mandate.”

Tesla has made just over $1 billion this year alone in automotive regulatory credits, which is revenue acquired from selling these to lagging car companies. Kingstone believes Tesla could be looking at roughly $3 billion in credit purchases to comply with the global regulations.

Tesla still poised to earn $3B in ZEV credits this year: Piper Sandler

Automakers operating in Canada are not putting in a lack of effort, but their slow pace in gaining traction in the EV space is a more relevant issue. Execution is where these companies are falling short, and Tesla is a beneficiary of their slow progress.

Kingston doesn’t believe the mandates are necessarily constructive:

“We’ve seen over $40 billion in new investment into Canada since 2020 and all signs were pointing to the automotive industry thriving. Now the federal government has regulations that specifically punishes companies that have a footprint here, requiring them to purchase credits from a company that has a minimal (Canadian) footprint and an almost nonexistent employee base.”

Kingston raises a valid point, but it is hard to see how Tesla is to blame for the issue of other car companies struggling to bring attractive, high-tech, and effective electric powertrains to market.

Tesla has continued to establish itself as the most technologically advanced company in terms of EVs and its tech, as it still offers the best product and has also established the most widespread charging infrastructure globally.

This is not to say other companies do not have good products. In my personal experience, Teslas are just more user-friendly, intuitive, and convenient.

Continue Reading

Cybertruck

Tesla ditches key Cybertruck charging feature for very obvious reason

“Wireless charging something as far off the ground as the [Cybertruck] is silly.”

Published

on

Credit: Tesla

Tesla is officially ditching the development of a key Cybertruck charging feature, and the reason is very obvious, all things considered.

The Cybertruck is among the most unique vehicles available on the market, and, like all Tesla vehicles, it has continued to improve through Over-the-Air software updates that enhance performance, safety, and other technological features.

However, the development of some features, while great on paper, turns out to be more difficult than expected. One of these features is the presence of wireless charging on the all-electric pickup, a capability Tesla has been working to integrate across its entire vehicle lineup.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

Most people who have used wireless charging for their phones or other devices have realized it is not as effective as plugging into a cord or cable. This is even relevant with Tesla vehicles, as the introduction of wireless charging for smartphones within the vehicles has been a nice feature, but not as impactful as many would hope.

It’s not necessarily Tesla’s fault, either. Wireless charging is a complex technology because much of the energy intended to be transferred to the phone is lost through heat.

Instead of the energy being stored in the battery, it is lost on the outside of the phone, which is why it becomes warm to the touch after sitting on a charging mat.

This is something that Tesla is likely trying to resolve with its vehicles before rolling out inductive charging to owners. The company has confirmed that it is working on a wireless charging solution, but it has yet to be released.

However, this feature will not be coming to the Cybertruck. Wes Morrill, the Cybertruck’s lead engineer, said that the vehicle’s height makes wireless charging “silly,” according to Not a Tesla App:

“Wireless charging something as far off the ground as the CT is silly.”

This is something that could impact future vehicle designs; the Cybertruck might not be the only higher-ground clearance vehicle Tesla plans to offer to customers. Therefore, being transparent about a design’s capabilities, or even developing technology that would enable this, would be useful to potential buyers.

At this point, wireless charging seems like it would be more advantageous for home charging than anything.

Due to its current inefficiency, it would likely be a great way to enable seamless charging in a garage or residential parking space, rather than something like a public charger where people are looking to plug and go in as little time as possible.

Continue Reading

Trending