Connect with us

News

SpaceX's Elon Musk works through holidays on Starship's "most difficult part"

SpaceX CEO Elon Musk is working with the company's Boca Chica team to get Starship's "most difficult part" ready for flight. (NASASpaceflight - bocachicagal)

Published

on

SpaceX CEO Elon Musk says he has been working through the holidays at the company’s Boca Chica facilities to get Starship’s “most difficult part” ready for the next-generation spacecraft’s next prototype and flight tests.

Known as tank domes or bulkheads, Musk says that the hardware is the most difficult part of building and assembly Starship’s primary structure, referring to the steel engine section, tanks, and pointed nose that comprise most of the spaceship’s body. Starship’s primary structure must stand up to the rigors of all aspects of flight, including highly-pressurized propellant tanks, extreme G-forces during launches, orbital reentry, and more.

It was never officially determined whether the failure was intentional or not but during the first Starship prototype’s (Mk1) last test campaign, the vehicle experience an overpressure event while being filled with liquid oxygen or nitrogen. Localized to the weld connecting the upper tank dome to Starship’s cylindrical tank section, the dome essentially sheared off at the weld and launched hundreds of feet into the air, sending a shockwave through the vehicle that crumpled many of its steel structures as if they were aluminum foil.

It’s likely that Starship Mk1’s failure was an intentional overpressure event, meaning that SpaceX may have purposely pressed the vehicle’s tanks beyond their design limits to determine how structurally sound they were. What is less clear is whether the rocket burst before or after reaching its theoretical design limit.

For reference, SpaceX’s Falcon 9 rocket operates with its fuel and oxygen tanks pressurized to about 50 psi (3.5 atm) with localized pressures likely doubling or tripling near the bottom of both tanks during the first minute or two of launch. Some amateur back-of-the-envelope calculations from videos of Starship Mk1’s burst event suggest that it was pressurized to at least 60-75 psi (4-5 atm) at its upper tank dome, meaning that the pressure on its two lower domes and tank walls would have been even higher. If correct, those unofficial figures mean that Mk1 actually performed quite well considering the ramshackle facilities and unprecedentedly spartan methods used to fabricate and assemble it.

Advertisement
-->

As such, Musk likely considers Starship’s tank domes the “most difficult part of [its] primary structure” in large part because of how difficult it is to make giant propellant tank domes simultaneously light and strong. Musk has previously implied that Starship Mk1 was more 200 tons (450,000 lb) empty while the ultimate goal for the spacecraft’s empty weight is closer to 120 tons, and a large portion of that weight savings will likely have to come from making its tank domes as light as possible.

In line with that educated speculation, the last month or so of SpaceX’s Starship work in Boca Chica, Texas has been marked by a distinct focus on building tank domes. In fact, Musk himself tweeted that he had worked all night with SpaceX engineers in Boca Chica in a bid to get dome production ready for Starship’s Mk3 prototype, the first Super Heavy hardware, and many more rockets to come.

Prior to Musk’s tweet, a Starship tank dome was actually shipped all the way from Florida to Texas and arrived earlier this month. Meanwhile, technicians have been briskly building up an additional dome using what appears to be a different method of integration involving new parts. SpaceX is currently attempting to weld Starship’s tank domes together from several dozen pre-formed sheets of stainless steel.

The sheets of steel assembled into the dome Musk showed on December 27th likely arrived in Boca Chica on December 13th, implying that SpaceX has managed to complete the majority of the first dome prototype – using a new process – in barely two weeks.

New sections of a tank dome arrived on December 13th. (NASASpaceflight – bocachicagal)
Technicians lifted the dome Musk was working on on December 28th, implying that it is more or less structurally complete. (NASASpaceflight – bocachicagal)
Hours after lifting the newest dome, SpaceX began assembling the next one. (NASASpaceflight – bocachicagal)
Starship’s third Boca Chica tank dome was spotted in-work on December 28th. (NASASpaceflight – bocachicagal)

After SpaceX lifted the partially-completed dome off one of its custom assembly jigs, workers almost instantly began staging new sections of steel, beginning the process of integrating yet another tank dome – now likely the fourth on-site in Boca Chica. Meanwhile, at a nearby section of SpaceX’s Boca Chica production facilities, yet another dome was visible on the 28th. In short, SpaceX should soon have more than enough tank domes to complete the next Starship prototype – said to be a significantly improved and refined design compared to Mk1.

Known as Starship Mk3 (or Starship SN01), Musk says that the rocket – currently just a miscellaneous collection of separate parts – could (“hopefully”) be ready for its first flight as soon as February or March 2020.

Advertisement
-->

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla adds 15th automaker to Supercharger access in 2025

Published

on

tesla supercharger
Credit: Tesla

Tesla has added the 15th automaker to the growing list of companies whose EVs can utilize the Supercharger Network this year, as BMW is the latest company to gain access to the largest charging infrastructure in the world.

BMW became the 15th company in 2025 to gain Tesla Supercharger access, after the company confirmed to its EV owners that they could use any of the more than 25,000 Supercharging stalls in North America.

Newer BMW all-electric cars, like the i4, i5, i7, and iX, are able to utilize Tesla’s V3 and V4 Superchargers. These are the exact model years, via the BMW Blog:

  • i4: 2022-2026 model years
  • i5: 2024-2025 model years
    • 2026 i5 (eDrive40 and xDrive40) after software update in Spring 2026
  • i7: 2023-2026 model years
  • iX: 2022-2025 model years
    • 2026 iX (all versions) after software update in Spring 2026

With the expansion of the companies that gained access in 2025 to the Tesla Supercharger Network, a vast majority of non-Tesla EVs are able to use the charging stalls to gain range in their cars.

So far in 2025, Tesla has enabled Supercharger access to:

  • Audi
  • BMW
  • Genesis
  • Honda
  • Hyundai
  • Jaguar Land Rover
  • Kia
  • Lucid
  • Mercedes-Benz
  • Nissan
  • Polestar
  • Subaru
  • Toyota
  • Volkswagen
  • Volvo

Drivers with BMW EVs who wish to charge at Tesla Superchargers must use an NACS-to-CCS1 adapter. In Q2 2026, BMW plans to release its official adapter, but there are third-party options available in the meantime.

They will also have to use the Tesla App to enable Supercharging access to determine rates and availability. It is a relatively seamless process.

Continue Reading

News

Tesla adds new feature that will be great for crowded parking situations

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

Published

on

Credit: Grok

Tesla has added a new feature that will be great for crowded parking lots, congested parking garages, or other confusing times when you cannot seem to pinpoint where your car went.

Tesla has added a new Vehicle Locator feature to the Tesla App with App Update v4.51.5.

This is the most recent iteration of the app and was priming owners for the slowly-released Holiday Update.

While there are several new features, which we will reveal later in this article, perhaps one of the coolest is that of the Vehicle Locator, which will now point you in the direction of your car using a directional arrow on the home screen. This is similar to what Apple uses to find devices:

In real time, the arrow gives an accurate depiction of which direction you should walk in to find your car. This seems extremely helpful in large parking lots or unfamiliar shopping centers.

Getting to your car after a sporting event is an event all in itself; this feature will undoubtedly help with it:

Tesla’s previous app versions revealed the address at which you could locate your car, which was great if you parked on the street in a city setting. It was also possible to use the map within the app to locate your car.

However, this new feature gives a more definitive location for your car and helps with the navigation to it, instead of potentially walking randomly.

It also reveals the distance you are from your car, which is a big plus.

Along with this new addition, Tesla added Photobooth features, Dog Mode Live Activity, Custom Wraps and Tints for Colorizer, and Dashcam Clip details.

All in all, this App update was pretty robust.

Continue Reading

Elon Musk

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

Published

on

Credit: Tesla

Tesla CEO Elon Musk shaded Waymo in a post on X on Wednesday, stating the company “never really had a chance” and that it “will be obvious in hindsight.”

Tesla and Waymo are the two primary contributors to the self-driving efforts in the United States, with both operating driverless ride-hailing services in the country. Tesla does have a Safety Monitor present in its vehicles in Austin, Texas, and someone in the driver’s seat in its Bay Area operation.

Musk says the Austin operation will be completely void of any Safety Monitors by the end of the year.

With the two companies being the main members of the driverless movement in the U.S., there is certainly a rivalry. The two have sparred back and forth with their geofences, or service areas, in both Austin and the Bay Area.

While that is a metric for comparison now, ultimately, it will not matter in the coming years, as the two companies will likely operate in a similar fashion.

Waymo has geared its business toward larger cities, and Tesla has said that its self-driving efforts will expand to every single one of its vehicles in any location globally. This is where the true difference between the two lies, along with the fact that Tesla uses its own vehicles, while Waymo has several models in its lineup from different manufacturers.

The two also have different ideas on how to solve self-driving, as Tesla uses a vision-only approach. Waymo relies on several things, including LiDAR, which Musk once called “a fool’s errand.”

This is where Tesla sets itself apart from the competition, and Musk highlighted the company’s position against Waymo.

Jeff Dean, the Chief Scientist for Google DeepMind, said on X:

“I don’t think Tesla has anywhere near the volume of rider-only autonomous miles that Waymo has (96M for Waymo, as of today). The safety data is quite compelling for Waymo, as well.”

Musk replied:

“Waymo never really had a chance against Tesla. This will be obvious in hindsight.”

Tesla stands to have a much larger fleet of vehicles in the coming years if it chooses to activate Robotaxi services with all passenger vehicles. A simple Over-the-Air update will activate this capability, while Waymo would likely be confined to the vehicles it commissions as Robotaxis.

Continue Reading