News
SpaceX transports Falcon 9 to launch site ahead of Block 5’s second expendable launch ever
Photos published on July 28th by customer Spacecom show a sooty SpaceX Falcon 9 booster and fresh upper stage on their way to LC-40 for the launch of the AMOS-17 communications satellite, scheduled to lift off no earlier than 6:51 pm EDT (22:51 UTC), August 3rd.
Sadly, the booster will reportedly be expended during the launch. According to Spacecom, AMOS-17 – built by Boeing – is an undeniably large satellite, weighing more than 6500 kg (14,300 lb) and featuring a solar array wingspan of ~35m (115 ft). SpaceX has certainly launched larger satellites than AMOS-17 and still recovered their Falcon 9 boosters, but this mission is somewhat unique and SpaceX is obviously willing to go the extra mile in this case.
In a surprise development, Spacecom officially confirmed that AMOS-17 will be SpaceX’s second expendable Falcon 9 Block 5 launch in the rocket’s ~15 months of operations, following in the footsteps of its expendable December 2018 launch debut. This is more than a little disappointing, thanks in large part to the fact that SpaceX has developed Falcon 9 (and Heavy) reusability to such a level of maturity that fully expendable Falcon launches just feel wrong.
In fact, just a month ago, SpaceX reached a major milestone of reusability when it recovered two flight-proven Falcon Heavy boosters and became the first company in history to launch and land more orbital-class rocket boosters than it has expended (as of June 2019: 81 launched, 43 landed). SpaceX followed this up with landing #44 after Falcon 9 B1056.2 successfully completed its second launch on July 25th.
While expending a Block 5 booster that SpaceX CEO Elon Musk has stated could launch upwards of 20-30 times is certainly disappointing, the sting of Block 5’s second expendable mission is at least soothed by the knowledge that it will be this booster’s third and final launch. The first expendable Block 5 launch – the US Air Force’s GPS III SV01 mission – made use of a brand new booster (B1054).
A (hopefully) worthy sacrifice
In a small way, Falcon 9 B1047’s premature demise could easily be viewed as a sort of symbolic eye-for-an-eye sacrifice. Although not a literal 1:1 replacement, AMOS-17 is still essentially a follow-on to Amos-6, destroyed on September 1st, 2016 when Falcon 9 suffered an exotic COPV failure that led to a massive explosion (Musk called it a ‘fast fire’).
Installed on top of the rocket during what was meant to be a pre-launch static fire test, the ~$200M+ Amos-6 satellite was not spared from the destruction and owner Spacecom ultimately received an insurance settlement it then used (in part) to purchase AMOS-17. Additionally, instead of accepting a cash payout from SpaceX, Spacecom chose the contractual alternative: a free Falcon 9 launch of their choice.
Is it a coincidence that a Block 5 booster is going to be expended as part of that replacement launch? Almost certainly, yes. At a minimum, SpaceX – essentially launching for free per a contractual agreement with Spacecom – has clearly decided along with Spacecom that putting all of Falcon 9’s energy into AMOS-17 is preferable to withholding margin for a landing.

With Falcon 9 B1047.2 in an expendable configuration, SpaceX can take a no-holds-barred approach towards delivering Spacecom’s AMOS-17 to the highest orbit possible. The higher the geostationary transfer orbit (GTO) Falcon 9 can launch AMOS-17 to, the faster the satellite can begin serving customers and thus generating revenue for Spacecom. Combined with the fact that more than half of AMOS-17’s massive 6.5-ton mass is chemical propellant, the spacecraft – pending a healthy launch and on-orbit commissioning – could be ready to start serving customers just a month or two after lift-off.
Falcon 9 B1047 will be missed, but the booster’s demise is an understandable cost of SpaceX prioritizing customer Spacecom’s launch experience above the company’s own best interests.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.