News
SpaceX’s Falcon 9 sticks foggy booster recovery at California landing zone
Update: SpaceX has successfully wrapped up the Radarsat Constellation Mission, likely its last launch from Vandenberg Air Force Base for six to nine months. Supporting its second mission, Falcon 9 booster B1051 completed a flawless launch and landing, returning to SpaceX’s pad-adjacent LZ-4 landing zone after a gentle, (relatively) low-velocity reentry at ~1.6 km/s (3700 mph).
Sadly, the sun was unable to beat back Vandenberg’s iconic fog layer and it’s unlikely that remote cameras (even including SpaceX’s own on-pad webcast cameras) captured anything more than gray fog. According to Teslarati’s photographers, the sonic booms produced by the returning Falcon 9 booster were as spectacular as ever, though.
Despite more than seven months of delays, the Canadian Space Agency (CSA) can finally rest now that all three Radarsat Constellation spacecraft are safely in orbit, completing what is arguably the most arduous leg of most spacecraft journeys. Valued at more than $1 billion, SpaceX has also successfully launched its most expensive payload by a large margin, adding to Falcon 9’s increasingly impressive record of reliability.




SpaceX is just hours away from its sixth Falcon 9 launch of 2019, likely the company’s last Vandenberg Air Force Base (VAFB) mission for the rest of the year (and possibly longer).
Flight proven Falcon 9 booster B1051.1 has been assigned to the launch and will attempt to return to SpaceX’s LZ-4 landing zone after sending Canada’s Radarsat Constellation Mission (RCM) on its way to orbit. Likely weighing approximately 5000 kg (11,000 lb), RCM is comprised of a trio of Earth observation spacecraft with large surface-scanning radars as their primary payloads. At a cost of more than $1 billion, RCM will be the most expensive payload SpaceX has ever attempted to launch. Falcon 9 has a 13-minute window for launch but liftoff is scheduled to occur at 7:17 am PDT (14:17 UTC) on Wednesday, June 12th.
As it stands, Falcon 9’s RCM launch will last just over one hour from start to finish. B1051 will separate from Falcon 9’s upper stage, fairing, and payload and perform a return-to-launch-site (RTLS) recovery, landing at SpaceX’s LZ-4 pad less than eight minutes after liftoff.

LZ-4 sits barely a quarter of a mile away from SLC-4E, the SpaceX-leased pad that B1051.1 will lift off from. Sadly, B1051 is unlikely to remain at SLC-4 after its (hopefully successful) landing at LZ-4 due to the fact that SpaceX has no public missions scheduled to launch from VAFB until Q1 2020 at the earliest. In fact, SpaceX is reportedly planning major organizational changes – set to begin soon after this launch is complete. As such, RCM could be SpaceX’s last launch from California for at least the next six months, a period of downtime that could easily grow to a year or more if tenuous 2020 launch dates suffer payload-side delays.
SpaceX currently has three launches scheduled from its Vandenberg pad in 2020, although one, two, or even all three could easily slip into 2021 based on the limited information available about the payloads in question. In 2021, SpaceX has a fairly busy VAFB manifest of at least six possible launches – possibly more if 2020 missions slip.
Regardless, RCM will be a good temporary send-off to SpaceX’s launch activity in California. Press photographers – unaffiliated with SpaceX – will have the first opportunity ever to remotely capture images of a Falcon 9 booster landing in daylight. Additionally, weather permitting, Vandenberg Air Force Base makes for an exceptionally beautiful venue for rocket launches thanks to the vistas and setting offered by Northern California and the Pacific Ocean.
Current forecasts suggest that the traditional fog layer will begin to clear at 7am local time, around the same time that SpaceX’s RCM webcast will kick off. With any luck, the photographers’ remote cameras will be greeted by a clear Pacific morning come liftoff.


Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.