Connect with us

News

SpaceX ships Falcon 9 booster west for second California launch of 2019

Falcon 9 B1051 completed its first successful launch and landing on March 2nd and is now being transported west for its second mission of 2019. (SpaceX/Joshuah Murrah)

Published

on

A local resident spotted a SpaceX Falcon 9 booster heading west out of Florida, likely bound for the company’s SLC-4E Vandenberg Air Force Base (VAFB) launch pad and second California launch of 2019.

Barring a surprise reassignment, the booster Joshuah Murrah caught is Falcon 9 B1051, on its way west some 50 days after successfully supporting Crew Dragon’s March 2nd launch debut. Despite the availability of B1046, B1047, and B1049, B1051 was assigned to the Canadian Space Agency’s (CSA) Radarsat Constellation Mission (RCM) shortly after landing aboard OCISLY, triggering major launch delays. The most logical explanation for customer CSA’s and satellite contractor Maxar Technologies’ curious decision is that they must believe that Falcon 9 Block 5 boosters with more than one launch in their past add more risk than those that do not.

According to an April 16th update from CSA, RCM’s launch was scheduled for no earlier than (NET) late May or early June, although word on the ground is that mid-to-late June is now a more likely target. Contrary to rumors of delays, B1051’s shipment west indicates that SpaceX has more or less completed the booster’s refurbishment, likely the easiest Falcon 9 Block 5 refurbishment yet thanks to its relatively slow and cool reentry after launching Crew Dragon.

B1051 returned to Pad 39A’s integration hangar around March 7th, where it spent approximately 50 days being inspected, refurbished, and prepared for cross-country transport. The booster departed Florida on April 26th and will likely arrive at VAFB around May 2nd. Even assuming a slow trip west and buggy preflight preparations, Falcon 9 should theoretically be ready to launch RCM no later than the third or fourth week of May, barring issues or production delays with the mission’s fairing or Falcon upper stage.

Falcon 9 B1051 is refurbished inside Pad 39A’s main hangar, April 2019. (SpaceX)

Given that Maxar/CSA chose B1051 at a cost of months of launch delays, they may have needs that far outstretch the normal demands of SpaceX’s private (non-government) customers, not out of the question given that CSA is a national space agency and RCM is a high-value (~$1B) science mission. Short of flying on a new Falcon 9 booster, B1051 does theoretically seem to offer the least risk of failure insofar as one can claim that boosters that have completed more launches are more likely to fail.

SpaceX would likely vehemently deny such a claim given their position that highly reusable rockets – much like aircraft – will actually become more reliable and trustworthy the more they launch. Both positions make sense in theory but theory falls flat in the face of actual data, of which only SpaceX and certain customers have access to.

As an external observer, the best data available is a binary public record of Falcon 9 launch success, as well as the degree to which missions are delayed beyond their scheduled launch targets. Falcon 9 Block 5 boosters have launched 16 times in 11 months, six of which used a flight-proven first stage. Flight-proven boosters appear to be a bit more finicky than unflown rockets in terms of late-stage launch delays, but the data is inconsistent and the sample size statistically insignificant. More generally, Falcon 9 and Falcon Heavy have launched 72 times in nine years and suffered two total failures, both caused by unflown upper stages. In 72 launches, including 20 missions with flight-proven boosters, a Falcon 9/Heavy first stage has never caused a total mission failure.

In short, it’s impossible to intuit any clear performance or reliability advantage without the sort of granular per-mission data that only SpaceX and privileged customers have access to. In general, Falcon 9 – reused or not – has consecutively completed 41 successful launches since its second and last mission failure in September 2016, half (49%) of which used flight-proven boosters. Of course, customers have every right to their own standards and expectations of quality and risk-reduction, but Falcon 9’s performance largely speaks for itself at this point – anything beyond its default record of mission assurance is just icing on the proverbial spaceflight cake.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading