News
SpaceX ships Falcon 9 booster west for second California launch of 2019
A local resident spotted a SpaceX Falcon 9 booster heading west out of Florida, likely bound for the company’s SLC-4E Vandenberg Air Force Base (VAFB) launch pad and second California launch of 2019.
Barring a surprise reassignment, the booster Joshuah Murrah caught is Falcon 9 B1051, on its way west some 50 days after successfully supporting Crew Dragon’s March 2nd launch debut. Despite the availability of B1046, B1047, and B1049, B1051 was assigned to the Canadian Space Agency’s (CSA) Radarsat Constellation Mission (RCM) shortly after landing aboard OCISLY, triggering major launch delays. The most logical explanation for customer CSA’s and satellite contractor Maxar Technologies’ curious decision is that they must believe that Falcon 9 Block 5 boosters with more than one launch in their past add more risk than those that do not.
According to an April 16th update from CSA, RCM’s launch was scheduled for no earlier than (NET) late May or early June, although word on the ground is that mid-to-late June is now a more likely target. Contrary to rumors of delays, B1051’s shipment west indicates that SpaceX has more or less completed the booster’s refurbishment, likely the easiest Falcon 9 Block 5 refurbishment yet thanks to its relatively slow and cool reentry after launching Crew Dragon.
B1051 returned to Pad 39A’s integration hangar around March 7th, where it spent approximately 50 days being inspected, refurbished, and prepared for cross-country transport. The booster departed Florida on April 26th and will likely arrive at VAFB around May 2nd. Even assuming a slow trip west and buggy preflight preparations, Falcon 9 should theoretically be ready to launch RCM no later than the third or fourth week of May, barring issues or production delays with the mission’s fairing or Falcon upper stage.

Given that Maxar/CSA chose B1051 at a cost of months of launch delays, they may have needs that far outstretch the normal demands of SpaceX’s private (non-government) customers, not out of the question given that CSA is a national space agency and RCM is a high-value (~$1B) science mission. Short of flying on a new Falcon 9 booster, B1051 does theoretically seem to offer the least risk of failure insofar as one can claim that boosters that have completed more launches are more likely to fail.
SpaceX would likely vehemently deny such a claim given their position that highly reusable rockets – much like aircraft – will actually become more reliable and trustworthy the more they launch. Both positions make sense in theory but theory falls flat in the face of actual data, of which only SpaceX and certain customers have access to.
As an external observer, the best data available is a binary public record of Falcon 9 launch success, as well as the degree to which missions are delayed beyond their scheduled launch targets. Falcon 9 Block 5 boosters have launched 16 times in 11 months, six of which used a flight-proven first stage. Flight-proven boosters appear to be a bit more finicky than unflown rockets in terms of late-stage launch delays, but the data is inconsistent and the sample size statistically insignificant. More generally, Falcon 9 and Falcon Heavy have launched 72 times in nine years and suffered two total failures, both caused by unflown upper stages. In 72 launches, including 20 missions with flight-proven boosters, a Falcon 9/Heavy first stage has never caused a total mission failure.
In short, it’s impossible to intuit any clear performance or reliability advantage without the sort of granular per-mission data that only SpaceX and privileged customers have access to. In general, Falcon 9 – reused or not – has consecutively completed 41 successful launches since its second and last mission failure in September 2016, half (49%) of which used flight-proven boosters. Of course, customers have every right to their own standards and expectations of quality and risk-reduction, but Falcon 9’s performance largely speaks for itself at this point – anything beyond its default record of mission assurance is just icing on the proverbial spaceflight cake.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla China delivery centers packed as Q4 2025 enters its final month
Fresh photos from delivery centers in the country show rows upon rows of Model Ys and Model 3s.
Tesla’s delivery centers in China are filled with vehicles as the company ramps up for its final push in Q4 2025. Fresh photos from delivery centers in the country show rows upon rows of Model Ys and Model 3s, signaling strong end-of-quarter momentum.
A delivery push for Q4 2025
A recent aerial shot from a Tesla delivery center in China captures the company’s efforts to deliver as many vehicles as possible as the year comes to a close. As could be seen in the image, which was posted by on X by Tesla enthusiast Nic Cruz Patane, the facility was filled with numerous Model Y and Model 3 units, each vehicle seemingly ready to be handed over to customers.
Echoing the scene, another post, reportedly from two weeks prior, showed a similar scene in a Shanghai location, which was packed with Model Y units. X user Roberto Nores shared the photo, noting that the image also shows multiple Model Y Ls, a six-seat extended wheelbase version of the popular all-electric crossover.
Towards a strong Q4 finish
China remains Tesla’s volume powerhouse, accounting for a good portion of the company’s global deliveries in recent quarters. That being said, reports did emerge in early November stating that the company only reached 26,006 retail sales during October, as noted in a CNEV Post report. The reasons for this remain to be seen, though a focus on exports could have been a contributing factor.
Tesla China does seem to be hinting at some momentum this November. Just recently, Tesla watchers observed that the order page for the Model Y in China shows a message informing customers that those who wish to guarantee delivery by the end of the year should purchase an inventory unit. This was despite the Model Y RWD and Model Y L showing an estimated delivery timeline of 4-8 weeks, and the Model Y Long Range RWD and Model Y Long Range AWD showing 4-13 weeks.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.



