News
SpaceX ships Falcon 9 booster west for second California launch of 2019
A local resident spotted a SpaceX Falcon 9 booster heading west out of Florida, likely bound for the company’s SLC-4E Vandenberg Air Force Base (VAFB) launch pad and second California launch of 2019.
Barring a surprise reassignment, the booster Joshuah Murrah caught is Falcon 9 B1051, on its way west some 50 days after successfully supporting Crew Dragon’s March 2nd launch debut. Despite the availability of B1046, B1047, and B1049, B1051 was assigned to the Canadian Space Agency’s (CSA) Radarsat Constellation Mission (RCM) shortly after landing aboard OCISLY, triggering major launch delays. The most logical explanation for customer CSA’s and satellite contractor Maxar Technologies’ curious decision is that they must believe that Falcon 9 Block 5 boosters with more than one launch in their past add more risk than those that do not.
According to an April 16th update from CSA, RCM’s launch was scheduled for no earlier than (NET) late May or early June, although word on the ground is that mid-to-late June is now a more likely target. Contrary to rumors of delays, B1051’s shipment west indicates that SpaceX has more or less completed the booster’s refurbishment, likely the easiest Falcon 9 Block 5 refurbishment yet thanks to its relatively slow and cool reentry after launching Crew Dragon.
B1051 returned to Pad 39A’s integration hangar around March 7th, where it spent approximately 50 days being inspected, refurbished, and prepared for cross-country transport. The booster departed Florida on April 26th and will likely arrive at VAFB around May 2nd. Even assuming a slow trip west and buggy preflight preparations, Falcon 9 should theoretically be ready to launch RCM no later than the third or fourth week of May, barring issues or production delays with the mission’s fairing or Falcon upper stage.

Given that Maxar/CSA chose B1051 at a cost of months of launch delays, they may have needs that far outstretch the normal demands of SpaceX’s private (non-government) customers, not out of the question given that CSA is a national space agency and RCM is a high-value (~$1B) science mission. Short of flying on a new Falcon 9 booster, B1051 does theoretically seem to offer the least risk of failure insofar as one can claim that boosters that have completed more launches are more likely to fail.
SpaceX would likely vehemently deny such a claim given their position that highly reusable rockets – much like aircraft – will actually become more reliable and trustworthy the more they launch. Both positions make sense in theory but theory falls flat in the face of actual data, of which only SpaceX and certain customers have access to.
As an external observer, the best data available is a binary public record of Falcon 9 launch success, as well as the degree to which missions are delayed beyond their scheduled launch targets. Falcon 9 Block 5 boosters have launched 16 times in 11 months, six of which used a flight-proven first stage. Flight-proven boosters appear to be a bit more finicky than unflown rockets in terms of late-stage launch delays, but the data is inconsistent and the sample size statistically insignificant. More generally, Falcon 9 and Falcon Heavy have launched 72 times in nine years and suffered two total failures, both caused by unflown upper stages. In 72 launches, including 20 missions with flight-proven boosters, a Falcon 9/Heavy first stage has never caused a total mission failure.
In short, it’s impossible to intuit any clear performance or reliability advantage without the sort of granular per-mission data that only SpaceX and privileged customers have access to. In general, Falcon 9 – reused or not – has consecutively completed 41 successful launches since its second and last mission failure in September 2016, half (49%) of which used flight-proven boosters. Of course, customers have every right to their own standards and expectations of quality and risk-reduction, but Falcon 9’s performance largely speaks for itself at this point – anything beyond its default record of mission assurance is just icing on the proverbial spaceflight cake.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Nvidia CEO Jensen Huang explains difference between Tesla FSD and Alpamayo
“Tesla’s FSD stack is completely world-class,” the Nvidia CEO said.
NVIDIA CEO Jensen Huang has offered high praise for Tesla’s Full Self-Driving (FSD) system during a Q&A at CES 2026, calling it “world-class” and “state-of-the-art” in design, training, and performance.
More importantly, he also shared some insights about the key differences between FSD and Nvidia’s recently announced Alpamayo system.
Jensen Huang’s praise for Tesla FSD
Nvidia made headlines at CES following its announcement of Alpamayo, which uses artificial intelligence to accelerate the development of autonomous driving solutions. Due to its focus on AI, many started speculating that Alpamayo would be a direct rival to FSD. This was somewhat addressed by Elon Musk, who predicted that “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.”
During his Q&A, Nvidia CEO Jensen Huang was asked about the difference between FSD and Alpamayo. His response was extensive:
“Tesla’s FSD stack is completely world-class. They’ve been working on it for quite some time. It’s world-class not only in the number of miles it’s accumulated, but in the way it’s designed, the way they do training, data collection, curation, synthetic data generation, and all of their simulation technologies.
“Of course, the latest generation is end-to-end Full Self-Driving—meaning it’s one large model trained end to end. And so… Elon’s AD system is, in every way, 100% state-of-the-art. I’m really quite impressed by the technology. I have it, and I drive it in our house, and it works incredibly well,” the Nvidia CEO said.
Nvidia’s platform approach vs Tesla’s integration
Huang also stated that Nvidia’s Alpamayo system was built around a fundamentally different philosophy from Tesla’s. Rather than developing self-driving cars itself, Nvidia supplies the full autonomous technology stack for other companies to use.
“Nvidia doesn’t build self-driving cars. We build the full stack so others can,” Huang said, explaining that Nvidia provides separate systems for training, simulation, and in-vehicle computing, all supported by shared software.
He added that customers can adopt as much or as little of the platform as they need, noting that Nvidia works across the industry, including with Tesla on training systems and companies like Waymo, XPeng, and Nuro on vehicle computing.
“So our system is really quite pervasive because we’re a technology platform provider. That’s the primary difference. There’s no question in our mind that, of the billion cars on the road today, in another 10 years’ time, hundreds of millions of them will have great autonomous capability. This is likely one of the largest, fastest-growing technology industries over the next decade.”
He also emphasized Nvidia’s open approach, saying the company open-sources its models and helps partners train their own systems. “We’re not a self-driving car company. We’re enabling the autonomous industry,” Huang said.
Elon Musk
Elon Musk confirms xAI’s purchase of five 380 MW natural gas turbines
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI, Elon Musk’s artificial intelligence startup, has purchased five additional 380 MW natural gas turbines from South Korea’s Doosan Enerbility to power its growing supercomputer clusters.
The deal, which was confirmed by Musk on X, highlights xAI’s effort to aggressively scale its operations.
xAI’s turbine deal details
News of xAI’s new turbines was shared on social media platform X, with user @SemiAnalysis_ stating that the turbines were produced by South Korea’s Doosan Enerbility. As noted in an Asian Business Daily report, Doosan Enerbility announced last October that it signed a contract to supply two 380 MW gas turbines for a major U.S. tech company. Doosan later noted in December that it secured an order for three more 380 MW gas turbines.
As per the X user, the gas turbines would power an additional 600,000+ GB200 NVL72 equivalent size cluster. This should make xAI’s facilities among the largest in the world. In a reply, Elon Musk confirmed that xAI did purchase the turbines. “True,” Musk wrote in a post on X.
xAI’s ambitions
Recent reports have indicated that xAI closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development. The funding, as per the AI startup, “will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products.”
The company also teased the rollout of its upcoming frontier AI model. “Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote in a post on its website.
Elon Musk
Elon Musk’s xAI closes upsized $20B Series E funding round
xAI announced the investment round in a post on its official website.
xAI has closed an upsized $20 billion Series E funding round, exceeding the initial $15 billion target to fuel rapid infrastructure scaling and AI product development.
xAI announced the investment round in a post on its official website.
A $20 billion Series E round
As noted by the artificial intelligence startup in its post, the Series E funding round attracted a diverse group of investors, including Valor Equity Partners, Stepstone Group, Fidelity Management & Research Company, Qatar Investment Authority, MGX, and Baron Capital Group, among others.
Strategic partners NVIDIA and Cisco Investments also continued support for building the world’s largest GPU clusters.
As xAI stated, “This financing will accelerate our world-leading infrastructure buildout, enable the rapid development and deployment of transformative AI products reaching billions of users, and fuel groundbreaking research advancing xAI’s core mission: Understanding the Universe.”
xAI’s core mission
Th Series E funding builds on xAI’s previous rounds, powering Grok advancements and massive compute expansions like the Memphis supercluster. The upsized demand reflects growing recognition of xAI’s potential in frontier AI.
xAI also highlighted several of its breakthroughs in 2025, from the buildout of Colossus I and II, which ended with over 1 million H100 GPU equivalents, and the rollout of the Grok 4 Series, Grok Voice, and Grok Imagine, among others. The company also confirmed that work is already underway to train the flagship large language model’s next iteration, Grok 5.
“Looking ahead, Grok 5 is currently in training, and we are focused on launching innovative new consumer and enterprise products that harness the power of Grok, Colossus, and 𝕏 to transform how we live, work, and play,” xAI wrote.


