Connect with us

News

SpaceX drone ship fleet aces two Falcon 9 booster recoveries in 48 hours

Two boosters, two drone ships, two days. (Richard Angle)

Published

on

SpaceX’s two-vessel drone ship fleet has successfully returned two boosters from sea to port in the space of just ~40 hours, an impressive feat that simultaneously shed light on a new kind of bottleneck for Falcon launches.

Completed on January 20th and 24th and originally planned as few as 25 hours apart, SpaceX’s back-to-back Starlink-16 and Transporter-1 launches made it clear that drone ship availability could quickly become a constraint as the company eyes increasingly ambitious launch cadence targets. CEO Elon Musk has stated that SpaceX is targeting up to 48 launches in 2021, translating to an average of one launch every 7.5 days.

As it turns out, measured from port departure to port arrival, that target is practically the same as the average amount of time it takes one of SpaceX’s two drone ship landing platforms to complete a booster recovery. Both existing drone ships must be slowly towed to and from the booster landing area, generally involving a minimum round trip of 800 miles (~1300 km) and some five days in transit.

Falcon 9 B1051 returns to port after its eighth successful launch, becoming SpaceX’s newest fleet leader. (Richard Angle)

In other words, even given a perfectly optimized schedule in which SpaceX launches missions requiring at-sea recovery every ~180 hours throughout 2021, each mission would have just a handful of days worth of margin before one launch delay would inherently delay another launch. Fundamentally, with a fleet of two drone ships requiring an average of five days of transit time per recovery, SpaceX could theoretically support as many as ~70 booster recoveries annually assuming zero downtime, no launch delays, and mere hours spent at the landing zone before turning around and heading back to port.

To be clear, recovery ship availability is an excellent problem to have, as it implies that SpaceX is fast approaching a rate of launch (and routine rocket landings) unprecedented in the history of commercial spaceflight. Thankfully, SpaceX also has an exceptional track-record of solving hard problems and there remains a great deal of ‘slack’ to be optimized out of its fleet of recovery ships.

~48 hours later, Falcon 9 booster B1058 sailed into port aboard drone ship Of Course I Still Love You (OCISLY). (Richard Angle)

That is all to say that removing the fundamental bottlenecks posed by SpaceX’s existing fleet will absolutely require at least one or two new drone ships on top of at least two major oil rig conversion projects in work for Starship. Whether in the form of one or more new converted barges or some kind of faster, self-propelled vessel, it’s safe to say that new ships are virtually guaranteed and likely close at hand unless SpaceX has decided to accept a semi-arbitrary ceiling on annual East Coast launches.

Just one month into 2021, SpaceX’s two drone ships are already being stretched to their operational limits to the point of launch delays. Delayed from January 17th to January 20th, Starlink-16 held up drone ship Just Read The Instruction for several days, resulting in the vessel returning to port on the 24th, just ~60 hours prior to Starlink-17’s original January 27th launch target. With drone ship Of Course I Still Love You (OCISLY) already indisposed at sea to support SpaceX’s January 24th Transporter-1 launch, SpaceX had to move Starlink-17 to January 30th.

Advertisement
-->

After a few days in port for booster processing and maintenance, drone ship JRTI ultimately departed Port Canaveral for Starlink-17 on the evening of the 27th, most likely delaying the launch to Sunday, January 31st. For now, though, Falcon 9 booster B1049 is scheduled to launch for eighth time no earlier than (NET) 7:24 am EST (12:24 UTC), January 30th. Simultaneously, drone ship Of Course I Still Love You will likely need to depart Port Canaveral later this weekend to support Starlink-18, scheduled to launch as soon as 1:19 am EST, February 4th.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla shocks with latest Robotaxi testing move

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading