News
SpaceX, Firefly Aerospace targeting three rocket launches in two days
Update: As is a common occurrence in spaceflight, two of the three planned missions have been delayed or scrubbed. Firefly’s second Alpha launch has slipped to no earlier than (NET) September 12th after an aborted attempt on the 11th, and SpaceX’s Starlink 4-34 mission was pushed from September 11th to September 13th.
SpaceX and Firefly Aerospace are on track to attempt three orbital launches this weekend as the former continues to relentlessly assemble a constellation of Starlink internet satellites and the latter works to secure its first success.
On the heels of 40 successful Falcon 9 launches this year, SpaceX is a few days away from two more Starlink missions that will likely leave the company with more than 3000 working satellites in orbit.
Founded in 2017, 15 years after SpaceX, Firefly Aerospace is almost entirely focused on one near-term goal: the first successful launch of its Alpha rocket.
Firefly’s Alpha rocket lifted off for the first time on September 2nd, 2021. Just moments after launch, a faulty cable caused one of the Alpha first stage’s four Reaver engines to shut down, immediately dooming the attempt. The rocket inexplicably persevered, though, and managed more than two minutes of powered flight before it lost control, became a range safety risk, and was terminated.
More than a year later, Firefly believes it has solved the problems that doomed Alpha Flight 1 and is on the cusp of the rocket’s second launch attempt, which has been scheduled no earlier than (NET) 3pm PST (22:00 UTC) on Sunday, September 11th.
Recently, the second fully stacked Alpha rocket completed a wet dress rehearsal and static fire while installed on Firefly’s Vandenberg Space Force Base (VSFB) SLC-2W pad, confirming its readiness for flight. Measuring 1.8 meters (6 ft) wide and 29.5 meters (~95 ft) tall, Alpha is about half the width and height of SpaceX’s Falcon 9 workhorse, and Firefly estimates that the expendable rocket will be able to launch up to 1.17 tons (~2560 lb) to Low Earth Orbit (LEO).
That’s several times more performance per launch than competitors like Rocket Lab, Astra Space, and Virgin Orbit, but 14 times less than a partially reusable Falcon 9. At $15 million apiece, however, the rocket’s list price will be 4.5 times less than Falcon 9’s, which could be enough to create a niche for customers that want to spend a bit more to send smaller satellites exactly where they want instead of getting dropped off in the general vicinity as a rideshare payload.
Demonstrating an impressive level of transparency, Firefly will offer a public livestream of Alpha’s second flight in full awareness that it could ultimately broadcast a launch failure for the second time in a row. There are very few instances in the history of spaceflight where a new group’s new rocket successfully reached orbit on its first launch, so it’s a credit to the startup to acknowledge the reality that launch failures are a common extension of the development process, rather than something to hide from the public.


SpaceX knows that reality well. Falcon 1, its first rocket, was about half the size of Firefly’s Alpha and suffered three launch failures in two and half years before finally succeeding on its fourth attempt. More than a magnitude larger, Falcon 9 likely benefitted from SpaceX’s Falcon 1 experience and had a much smoother start to life, though it did eventually experience its own share of failures years after its 2010 debut.
12 years later, Falcon 9 is one of the most successful launch vehicles of all time, and has simultaneously pioneered the commercially viable reuse of orbital-class rockets. Currently on a historic pace of one launch every ~6.2 days in 2022, Falcon 9 recently completed its 146th successful launch in a row and 173rd successful launch overall.
Hopefully continuing those trends, Next Spaceflight reports that Falcon 9 is scheduled to launch two more batches of Starlink satellites at 9:10 pm EDT on Saturday, September 10th, and 10:53 pm EDT on Sunday, September 11th. In addition to several dozen Starlink satellites, the first mission – Starlink 4-2 – is expected to carry a relatively large 1.5-ton (~3300 lb) satellite prototype for space-to-phone communications startup AST SpaceMobile. The second mission, known as Starlink 4-34, should be a dedicated launch of another 53 or 54 Starlink satellites.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
