A SpaceX Falcon 9 rocket has successfully launched 51 upgraded laser-linked Starlink satellites from its Vandenberg Space Force Base (VSFB) – the first mission of its kind out of the company’s west coast launch facilities.
Known as Starlink Group 2-1, the mission debuted the operational design of new V1.5 Starlink satellites with laser interlinks that will eventually let the constellation route its own communications almost anywhere on Earth – regardless of ground station locations. Aside from potentially allowing SpaceX to flout local regulations in countries with oppressive communications restrictions, firewalls, or censors, those lasers will also give Starlink the ability to easily deliver internet to moving vehicles – including aircraft traveling over oceans – and in even the remotest locations with no ground infrastructure for hundreds of miles.
Independent of its main purpose, the Starlink 2-1 mission also saw SpaceX tie its internal Falcon booster reusability record. Following in the footsteps of younger booster B1051, Falcon 9 B1049, which debuted in September 2018, successfully completed its tenth orbital-class launch and landing with Starlink 2-1. Originally scheduled to launch as early as July, apparent hiccups mass-producing new Starlink V1.5 satellites and their laser interlinks delayed the mission by about two months, causing SpaceX to launch just once in 11 weeks preceding the mission.


In comparison, Falcon 9 B1051 debuted in March 2019 and became the first booster to cross the ten-flight mark in May 2021, just 26 months later. B1049 took almost exactly 36 months to accomplish the same feat – almost 40% slower but still faster than any of the four NASA Space Shuttles that successfully reached similar milestones.
SpaceX also says that Starlink 2-1 is the 24th time the company has successfully launched a flight-proven Falcon 9 payload fairing, reusing a normally expendable component that CEO Elon Musk once likened to a pallet of $6 million in cash. Ultimately, the company gave up on efforts to catch parasailing fairing halves out of the air with giant ship-based nets and has instead refocused on perfecting the reuse of fairings that gently land in the ocean. For the most part, that’s been accomplished by designing Starlink satellites themselves to tolerate a much dirtier, louder launch environment than most other spacecraft, letting SpaceX remove sponge-like foam sound suppression tiles normally found inside fairings and worry less about needing to deep-clean the giant nosecones.
Nevertheless, SpaceX has technically launched 150+ commercial payloads – and one major geostationary commsat (SXM-7) – over three launches with flight-proven fairings, suggesting that there is a path to wider commercial acceptance of the brand new technology and the direct cost savings it brings.

With Starlink 2-1 safely in orbit, SpaceX now likely operates more space-based laser interlinks than the rest of the world combined. Eventually, once enough satellites with laser links are in orbit, SpaceX will be able to dramatically expand Starlink coverage almost independent of the construction of new ground stations – a heavily bureaucratic process that has proven to make for agonizingly slow progress in a number of the 15+ countries with active service. Instead of requiring that the satellite a given user terminal (dish) is communicating with be in direct line of sight of a ground station dish to route a user’s communications, thus connecting them to the internet, a constellation with widespread lasers will allow a dish’s active satellite to relay that connection through other satellites.
As a result, ground stations can be significantly further away from the users they end up supporting. Further, given that SpaceX has no plans to stop building new ground stations despite the bureaucratic hell it can involve, a well-linked Starlink constellation will ultimately be able to beat most wired connections by using lasers to route user communications to the ground stations closest to the real-world servers or services they’re trying to access.
Stay tuned for updates on SpaceX’s next polar Starlink launch(es) with ‘space lasers.’
News
Tesla avoids California sales suspension after DMV review
The agency confirmed Tuesday that Tesla has taken “corrective action.”
Tesla will not face a 30-day sales suspension in California after the state’s Department of Motor Vehicles (DMV) stated that the company has come into compliance regarding the marketing of its automated-driving features.
The agency confirmed Tuesday that Tesla has taken “corrective action” following a prior ruling over how it promoted Autopilot and Full Self-Driving (FSD), as noted in a Bloomberg News report.
The California DMV had previously given Tesla 90 days to address concerns that were raised by an administrative judge. Regulators had alleged that Tesla overstated the capabilities of its driver-assist systems, which were branded as Autopilot and Full Self-Driving.
A potential 30-day suspension of vehicle sales in California was on the table if Tesla had failed to comply. On Tuesday, however, the DMV stated that Tesla had met the requirements to avoid that penalty, though it did not provide detailed specifics about the changes that were made.
That being said, Tesla did discontinue its standalone Autopilot product in January and has ramped the marketing of its most advanced driver-assistance package available to consumers today, Full Self Driving (Supervised). From its naming, FSD (Supervised) clearly emphasizes that the system, despite its advanced features, still requires driver attention.
Following reports of a potential sales ban in California, Tesla clarified the matter on X, stating that the issue “was a ‘consumer protection’ order about the use of the term ‘Autopilot’ in a case where not one single customer came forward to say there’s a problem.” Tesla also noted that “Sales in California will continue uninterrupted.”
Tesla has not issued a comment about the matter as of writing.
Elon Musk
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Elon Musk has confirmed that Tesla does intend to sell a version of the Cybercab for less than $30,000 by 2027.
Elon Musk has confirmed that Tesla does intend to sell a version of the Cybercab for less than $30,000 by 2027. He shared the update in a post on social media platform X.
Amidst Tesla’s announcement that the first Cybercab has been produced at Giga Texas’ production line, some members of the Tesla community immediately started joking about how the milestone will affect a wager shared by popular YouTube tech reviewer Marques Brownlee (MKBHD.)
Following Tesla’s We, Robot event in October 2024, MKBHD noted that while the Cybercab was impressive in a lot of ways, he is very skeptical about Elon Musk’s estimate that the autonomous two-seater could be sold to consumers for below $30,000 around 2027.
“I think the obvious red flag, the biggest red flag to me is the timeline stuff. This is notorious Elon stuff. He gets on stage, he says we’re going to have this vehicle out for $30,000 before 2027,” he said, adding “No, they’re not. There’s just no way that they’re actually going to be able to do that. I mean, if they do, let’s say they do, I will shave my head on camera because I’m that confident.”
It was then no surprise that meme images of MKBHD with his head shaved immediately spread on X following Tesla’s announcement that the first Cybercab has been built at Giga Texas. One of these, which was posted by longtime FSD tester Whole Mars Catalog, received a response from Elon Musk. The CEO responded with the words “Gonna happen,” together with a laughing emoji.
Apart from riding jokes about MKBHD’s wager, Musk also confirmed that Tesla will be selling a Cybercab to regular consumers before 2027, and the vehicle will be priced for $30,000 or less. In response to an X user who asked if the exact scenario will be happening, Musk responded with a simple “Yes.”
While the first Cybercab has been produced at Giga Texas, it would not be surprising if the following months will only see low volumes of the autonomous two seater being produced. As per Elon Musk in previous comments, the Cybercab’s early production will likely be slow, but it will eventually be extremely fast. “For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast,” he said.
Elon Musk
First Tesla Cybercab rolls off Giga Texas production line
Tesla’s official account on X shared an image showing employees gathered around the first Cybercab built at Gigafactory Texas.
Tesla has produced the first Tesla Cybercab at Texas Gigafactory, marking a key milestone ahead of the planned autonomous two-seater’s production in April. The two-seat Robotaxi, which was unveiled in 2024, is designed without pedals or a steering wheel and represents Tesla’s most aggressive step yet toward fully autonomous mobility.
Tesla’s official account on X shared an image showing employees gathered around the first Cybercab built at Gigafactory Texas. Elon Musk echoed the milestone, writing, “Congratulations to the Tesla team on making the first production Cybercab!”
Previous comments from Musk on X reiterated the idea that production of the Cybercab “starts in April.” The vehicle will launch without traditional driver controls, and it will rely entirely on Tesla’s vision-based Full Self-Driving (FSD) system.
The Cybercab is positioned to compete with autonomous services such as Waymo. While Tesla has deployed Model Y vehicles in limited Robotaxi operations in Austin and the Bay Area, a serious ramp of the service to other cities across the United States is yet to be implemented. The production of the Cybercab could then be seen as a push towards the company’s autonomy plans.
Musk has linked the Cybercab to Tesla’s proposed “Unboxed” manufacturing process, which would assemble large vehicle modules separately before integrating them, rather than following a traditional production line. The approach is intended to cut costs, reduce factory footprint, and speed up output.
That being said, Elon Musk has set expectations for the Cybercab’s production ramp. As per Musk, it would likely take some time before meaningful volumes of the Cybercab are produced because it is such a new and different vehicle. But when the vehicle hits its pace, volumes will be notable.
“Initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast,” Musk noted.