News
SpaceX’s Mr Steven just misses catch, returns with intact Falcon 9 fairing
SpaceX appears to have successfully retrieved both halves of a Falcon 9 payload fairing intact, despite failing to catch them with recovery vessel Mr Steven.
Near the end of the company’s Iridium-6/GRACE-FO launch webcast, SpaceX engineer John Insprucker said that Falcon 9’s two payload fairing halves had both successfully deployed their parachutes and landed in the Pacific Ocean, also stating that Mr Steven “came very close” to success in an attempt to catch a fairing half in an upgraded net. The vessel’s return to port confirmed this, showing both fairing halves on board Mr Steven’s long utility deck, apparently intact and in great condition aside from saltwater immersion.
Per SpaceX VP of Mission Assurance Hans Koenigsmann, anything more than incidental exposure to sea spray appears to preempt any attempt at fairing reuse, meaning that perfectly intact fairing halves recovered from the surface of the ocean are incapable of flying on future commercial Falcon 9 missions. While he did not go into detail, it’s probable that SpaceX’s inability to reuse ocean-retrieved fairings derives from the extremely clean environments satellites are designed to survive in. Before reaching the vacuum of space, arguably the ‘cleanest’ environment that exists, satellite payloads (be it cameras, antennae, solar panels, can be generalized as extraordinarily sensitive collections of electronics and sensors that remain in clean-room environments throughout their time on Earth. This extends to the environment inside the payload fairing, and cleaning a fairing from seawater organics, particulate matter, and the general risk of outgassing would likely be so expensive and tedious that it would run counter to SpaceX’s goal of lowering the cost of launch with reusability.
- Both fairing halves from SpaceX’s Iridiium-6/GRACE-FO spied aboard Mr Steven after docking. (Pauline Acalin)
- While unreusable due to seawater immersion, it’s possible that these halves will take part in a drop test campaign mentioned by CEO Elon Musk. (Pauline Acalin)
Although they cannot be operationally reused, these and past halves presumably have been or will be invaluable as hardware pathfinders, assisting engineers and technicians in their pursuit of ultra-precise, reliable landings in Mr Steven’s net.
Mr Steven, a shiny new Fast Supply Vessel, has been extensively modified by SpaceX in its role as recovery vessel, most notably including massive claw-arms and a large, yellow net intended to allow the boat to catch parasailing payload fairings just before they impact the ocean surface. This requires an impressive level of accuracy and precision, given the fact that SpaceX’s payload fairings are typically traveling more than two kilometers per second at a peak at altitude of anywhere from 100-200 kilometers (functionally in space) at the point of separation, while Mr Steven’s net (the landing target) is at least a magnitude smaller than even SpaceX’s drone ships. With that in mind, it should come as little surprise that SpaceX has required ten or more failed attempts to get to the point where they are confident that a fairing half can successfully be captured in Mr Steven’s net.
- By all appearances, both Iridium-6/GRACE-FO fairing halves were retrieved intact from the ocean surface. Note the tiny technician installing a tarp inside one half. (Chuck Bennett, Instagram @chuckbennett)
- SpaceX’s fairing recovery vessel Mr Steven captured at high speed from a drone. (SpaceX)
Given how close SpaceX apparently was this time around, it’s all but inevitable that one of the next two or three California launches will feature the first truly successful fairing catch, paving the way for routine reuse of the ~800 kg, $3m halves. SpaceX’s next launches from Vandenberg Air Force Base are tentatively scheduled for the first half of July, late September, and October.
Thanks to Chuck Bennett for permitting Teslarati to use several of his photos of Mr Steven’s sunset return to Port of San Pedro. Follow him at his Instagram account @chuckbennett.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.



