News
SpaceX prepares new Starship tank for explosive test after rapid construction
Over the last few weeks, SpaceX’s South Texas Starship team has been making progress at a pace unprecedented even for the famously agile rocket company and is moving full speed ahead to kick off a new series of explosive tests as early as this morning.
Ever since SpaceX’s original Starship Mk1 prototype spectacularly failed during a November 2019 pressure test, the company has been rapidly rearranging and modifying the development schedule for its next-generation full-reusable rocket. Be it a side effect or coincidence, SpaceX effectively began closing its Florida Starship factory a week after Mk1’s demise and even shipped some of its Florida-built Starship hardware to Texas in recent weeks. However, most of the Florida workforce (up to 80%) was reportedly redirected elsewhere in the company, avoiding layoffs.
Some portion may have even moved to Texas and joined SpaceX’s Starship Boca Chica facilities. Given just how aggressively SpaceX has been expanding its local facilities and preparing new hardware for the next round of improved Starship prototypes, it seems quite likely that the South Texas outpost did indeed receive an influx of skilled workers. Most recently, the company has demonstrated its rapidly growing expertise in the bizarre art of building steel rockets en plein air by fabricating and integrating new tank domes and steel rings and then shipping the curious contraption to its nearby launch site in a matter of weeks from start to finish.
Although it’s difficult to determine the chronology of every single part of the mysterious new tank, it’s fairly safe to say that work on its structure began less than a week before SpaceX CEO Elon Musk tweeted a surprise update, indicating on December 27th that he was in Boca Chica, Texas working all night on “Starship tank dome production”.
In simple terms, the business half of SpaceX’s next-generation Starship upper stage and Super Heavy boosters are comprised of three main parts, shared by almost all launch vehicles. Both are rocket stages that must be as light as physically possible while supporting thousands of tons worth of supercool liquid oxygen and methane propellant. The majority of a simple rocket is ultimately a duo of cylindrical tanks capped by tank domes – also known as bulkheads. The bottom bulkhead of boosters and upper stages also serves as a mounting point for an engine section, where the vehicle’s rocket engines are attached to the rocket body in order to transfer their thrust throughout the rest of the structure.
SpaceX CEO Elon Musk says that Starship tank domes have turned out to be “the most difficult part of [the rocket’s] primary structure” to manufacture, thus explaining why he was apparently assisting the Boca Chica team all night on December 27th.
Starship Mk1 exploded on November 20th, 2019 during a nonflammable propellant loading test, a failure that unofficial videos have compellingly linked to the weld joint connecting the rocket’s upper tank dome to its cylindrical tank. That section of the rocket began leaking cryogenic propellant moments before the entire upper dome tore off the rest of the vehicle and launched hundreds of feet into the air.
All hail Baby Tank
In an apparent response to the unsatisfactory results of Starship Mk1’s manufacturing methods, SpaceX has rapidly initiated an already-planned upgrade of its Starship facilities and manufacturing methods in South Texas, taking delivery of a wealth of new tools over the last several weeks. Most recently, SpaceX’s latest step towards demonstrating that it has substantially improved manufacturing quality arrived in the form of a single propellant tank – the same diameter as Starship Mk1 but much shorter than any possible flight hardware.
Quickly nicknamed Bopper (short for Baby Starhopper) by locals and close followers, the miniature Starship test article came together at a truly spectacular pace. Comprised of two single-weld steel rings and two brand new tank domes, it appears that all four of the components were nothing more than parts and steel stock less than three weeks ago. The first sign of activity came around December 19th, when technicians began placing pressed steel sections onto a bulkhead (dome) assembly jig – used to precisely hold the pieces in the right shape and place as they are welded together.



Incredibly, aside from taking less than three weeks to go from miscellaneous parts to an assembled Starship tank delivered to the test site, SpaceX technicians appeared to finish stacking and welding its two halves (each a ring and a dome) perhaps a handful of hours before it was lifted onto a transporter and driven to the launch pad.


Even for SpaceX, moving a prototype from factory to test site hours after its primary structure was welded together represents an almost unfathomably fast pace of work – truly unfathomable in traditional aerospace. Whether or not such a pace of work is smart, sustainable, or worth it remains to be seen, but SpaceX is nevertheless on track to pressure test its new mini Starship tank as early as this morning, potentially resulting in another spectacular overpressure event (i.e. explosion).
If the tank survives up to or beyond the pressures SpaceX has designed it to, it’s safe to say that the next full-scale Starship prototype could come together far sooner than almost anyone might have expected.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD).
As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.”
10 billion miles of training data
Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly.
“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote.
Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles.
FSD’s total training miles
As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program.
The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”
News
Tesla earns top honors at MotorTrend’s SDV Innovator Awards
MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.
As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.
Tesla leaders and engineers recognized
The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.
Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.
Tesla’s software-first strategy
While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.
This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.
Elon Musk
Judge clears path for Elon Musk’s OpenAI lawsuit to go before a jury
The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder.
A U.S. judge has ruled that Elon Musk’s lawsuit accusing OpenAI of abandoning its founding nonprofit mission can proceed to a jury trial.
The decision maintains Musk’s claims that OpenAI’s shift toward a for-profit structure violated early assurances made to him as a co-founder. These claims are directly opposed by OpenAI.
Judge says disputed facts warrant a trial
At a hearing in Oakland, U.S. District Judge Yvonne Gonzalez Rogers stated that there was “plenty of evidence” suggesting that OpenAI leaders had promised that the organization’s original nonprofit structure would be maintained. She ruled that those disputed facts should be evaluated by a jury at a trial in March rather than decided by the court at this stage, as noted in a Reuters report.
Musk helped co-found OpenAI in 2015 but left the organization in 2018. In his lawsuit, he argued that he contributed roughly $38 million, or about 60% of OpenAI’s early funding, based on assurances that the company would remain a nonprofit dedicated to the public benefit. He is seeking unspecified monetary damages tied to what he describes as “ill-gotten gains.”
OpenAI, however, has repeatedly rejected Musk’s allegations. The company has stated that Musk’s claims were baseless and part of a pattern of harassment.
Rivalries and Microsoft ties
The case unfolds against the backdrop of intensifying competition in generative artificial intelligence. Musk now runs xAI, whose Grok chatbot competes directly with OpenAI’s flagship ChatGPT. OpenAI has argued that Musk is a frustrated commercial rival who is simply attempting to slow down a market leader.
The lawsuit also names Microsoft as a defendant, citing its multibillion-dollar partnerships with OpenAI. Microsoft has urged the court to dismiss the claims against it, arguing there is no evidence it aided or abetted any alleged misconduct. Lawyers for OpenAI have also pushed for the case to be thrown out, claiming that Musk failed to show sufficient factual basis for claims such as fraud and breach of contract.
Judge Gonzalez Rogers, however, declined to end the case at this stage, noting that a jury would also need to consider whether Musk filed the lawsuit within the applicable statute of limitations. Still, the dispute between Elon Musk and OpenAI is now headed for a high-profile jury trial in the coming months.