News
SpaceX prepares new Starship tank for explosive test after rapid construction
Over the last few weeks, SpaceX’s South Texas Starship team has been making progress at a pace unprecedented even for the famously agile rocket company and is moving full speed ahead to kick off a new series of explosive tests as early as this morning.
Ever since SpaceX’s original Starship Mk1 prototype spectacularly failed during a November 2019 pressure test, the company has been rapidly rearranging and modifying the development schedule for its next-generation full-reusable rocket. Be it a side effect or coincidence, SpaceX effectively began closing its Florida Starship factory a week after Mk1’s demise and even shipped some of its Florida-built Starship hardware to Texas in recent weeks. However, most of the Florida workforce (up to 80%) was reportedly redirected elsewhere in the company, avoiding layoffs.
Some portion may have even moved to Texas and joined SpaceX’s Starship Boca Chica facilities. Given just how aggressively SpaceX has been expanding its local facilities and preparing new hardware for the next round of improved Starship prototypes, it seems quite likely that the South Texas outpost did indeed receive an influx of skilled workers. Most recently, the company has demonstrated its rapidly growing expertise in the bizarre art of building steel rockets en plein air by fabricating and integrating new tank domes and steel rings and then shipping the curious contraption to its nearby launch site in a matter of weeks from start to finish.
Although it’s difficult to determine the chronology of every single part of the mysterious new tank, it’s fairly safe to say that work on its structure began less than a week before SpaceX CEO Elon Musk tweeted a surprise update, indicating on December 27th that he was in Boca Chica, Texas working all night on “Starship tank dome production”.
In simple terms, the business half of SpaceX’s next-generation Starship upper stage and Super Heavy boosters are comprised of three main parts, shared by almost all launch vehicles. Both are rocket stages that must be as light as physically possible while supporting thousands of tons worth of supercool liquid oxygen and methane propellant. The majority of a simple rocket is ultimately a duo of cylindrical tanks capped by tank domes – also known as bulkheads. The bottom bulkhead of boosters and upper stages also serves as a mounting point for an engine section, where the vehicle’s rocket engines are attached to the rocket body in order to transfer their thrust throughout the rest of the structure.
SpaceX CEO Elon Musk says that Starship tank domes have turned out to be “the most difficult part of [the rocket’s] primary structure” to manufacture, thus explaining why he was apparently assisting the Boca Chica team all night on December 27th.
Starship Mk1 exploded on November 20th, 2019 during a nonflammable propellant loading test, a failure that unofficial videos have compellingly linked to the weld joint connecting the rocket’s upper tank dome to its cylindrical tank. That section of the rocket began leaking cryogenic propellant moments before the entire upper dome tore off the rest of the vehicle and launched hundreds of feet into the air.
All hail Baby Tank
In an apparent response to the unsatisfactory results of Starship Mk1’s manufacturing methods, SpaceX has rapidly initiated an already-planned upgrade of its Starship facilities and manufacturing methods in South Texas, taking delivery of a wealth of new tools over the last several weeks. Most recently, SpaceX’s latest step towards demonstrating that it has substantially improved manufacturing quality arrived in the form of a single propellant tank – the same diameter as Starship Mk1 but much shorter than any possible flight hardware.
Quickly nicknamed Bopper (short for Baby Starhopper) by locals and close followers, the miniature Starship test article came together at a truly spectacular pace. Comprised of two single-weld steel rings and two brand new tank domes, it appears that all four of the components were nothing more than parts and steel stock less than three weeks ago. The first sign of activity came around December 19th, when technicians began placing pressed steel sections onto a bulkhead (dome) assembly jig – used to precisely hold the pieces in the right shape and place as they are welded together.



Incredibly, aside from taking less than three weeks to go from miscellaneous parts to an assembled Starship tank delivered to the test site, SpaceX technicians appeared to finish stacking and welding its two halves (each a ring and a dome) perhaps a handful of hours before it was lifted onto a transporter and driven to the launch pad.


Even for SpaceX, moving a prototype from factory to test site hours after its primary structure was welded together represents an almost unfathomably fast pace of work – truly unfathomable in traditional aerospace. Whether or not such a pace of work is smart, sustainable, or worth it remains to be seen, but SpaceX is nevertheless on track to pressure test its new mini Starship tank as early as this morning, potentially resulting in another spectacular overpressure event (i.e. explosion).
If the tank survives up to or beyond the pressures SpaceX has designed it to, it’s safe to say that the next full-scale Starship prototype could come together far sooner than almost anyone might have expected.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence
The Tesla CEO shared his recent insights in a post on social media platform X.
Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk.
The Tesla CEO shared his recent insights in a post on social media platform X.
Musk details AI chip roadmap
In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle.
He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.
Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.
AI5 manufacturing takes shape
Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.
Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.
Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.