Connect with us

News

SpaceX’s next three-Raptor Starship static fire delayed by winds, says Elon Musk

SpaceX CEO Elon Musk says that Starship SN8's next triple-Raptor static fire test has been delayed by high winds in South Texas. (NASASpaceflight - bocachicagal)

Published

on

CEO Elon Musk says that SpaceX’s second three-Raptor Starship static fire test has been delayed several days by bad weather at the company’s South Texas launch facilities.

Prior to Musk’s tweet, all signs pointed to a second static fire test as early as 5am to 11am CDT on Friday, October 30th – made official by a paper safety notice SpaceX distributes to remaining Boca Chica Village residents around 12-24 hours prior. Unfortunately, however, Musk says that SpaceX ran into “some challenges with high winds” – seemingly canceling today’s static fire attempt.

SpaceX has successfully installed three Raptors on Starship SN8 and is scheduled to attempt the first triple-engine static fire as early as October 14th. (Elon Musk)

On the other hand, there’s a chance that SpaceX’s October 30th safety warning and 5am-11am window could be for Starship SN8’s first wet dress rehearsal (WDR) with a nosecone (and thus a liquid oxygen header tank) installed. A wet dress rehearsal refers to the process of putting a rocket through a flow identical to what is done on launch day – albeit short of actually igniting or launching the rocket. In that sense, it’s essentially one step shorter than a static fire.

Road closure filings prior to November 1st are ambiguous, however, with no specific purpose disclosed. Technically, as long as SpaceX doesn’t perform a static fire or flight test without giving residents significant prior notice and necessary FAA/FCC approvals, road closures can more or less be used to whatever end the company deems necessary.

As far as triple-Raptor static fire testing goes, it’s unclear how anything less than mechanically dangerous wind conditions could interfere with Starship. Given that winds of 20-30 mph (and gusts even higher) are far from uncommon on the South Texas coast, Starship will need to be able to tolerate – and launch in – even worse weather.

Starship SN8 is no longer attached to a crane at its nose, leaving the task of withstanding wind sway entirely up to the launch mount and the rocket’s rigidity. (NASASpaceflight – bocachicagal)

Prototype testing is substantially different than operational flight procedures, though, and well-characterized test conditions and repeatability are essential for a company like SpaceX where the ‘build-test-fly-fail’ philosophy is the foundation of R&D. The process of functionally and permanently mating Starship SN8’s tank/engine and nose sections – a first for the Starship program – began less than ten days ago, so Musk is most likely referring to wind disrupting SN8’s on-pad integration.

SpaceX’s extensive reliance upon wheeled boom lifts to ferry workers around and inside Starship SN8 and the sheer scale and surface area of the rocket likely translate to an unsteady and relatively unsafe work environment in high winds.

Regardless of whether SpaceX actually puts Starship SN8 through any kind of tests on October 30th, the company has four more road closures (i.e. test windows) scheduled from Sunday to Wednesday. Aside from a 7pm to 1am CST (UTC-6) window on November 1st, SpaceX’s Mon-Wed testing will occur between 9am and 11pm. In Cameron County, Texas regulatory documents, SpaceX says it will use those windows for “SN8 Nose Cone Cryoproof” testing, referring to the process of filling the rocket’s tanks with supercool liquid nitrogen to verify their behavior at extreme temperatures.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla is improving Giga Berlin’s free “Giga Train” service for employees

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

Published

on

Credit: Jürgen Stegemann/LinkedIn

Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.

With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.

New shuttle route

As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.

“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.

Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.

Advertisement
-->

Tesla pushes for majority rail commuting

Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.

The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.

Continue Reading

News

Tesla Model 3 and Model Y dominate China’s real-world efficiency tests

The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.

Published

on

Credit: Grok Imagine

Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions. 

The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.

Tesla secures top efficiency results

Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report. 

These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla

Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker. 

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Advertisement
-->

Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.

Continue Reading

Elon Musk

Elon Musk reveals what will make Optimus’ ridiculous production targets feasible

Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.

Published

on

Credit: Tesla Optimus/X

Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.

Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.

The highest volume product

Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.

Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.

Self-replication is key

During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.

Advertisement
-->

The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems. 

If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.

Continue Reading