News
SpaceX to catch two Falcon 9 fairings at once with twin nets
Over the last three or so weeks, SpaceX rocket recovery technicians and engineers have rapidly modified a second Falcon fairing recovery vessel – known as GO Ms. Chief – to the point that it appears to be almost ready for its first catch attempt.
Essentially a twin of GO Ms. Tree (formerly Mr. Steven), Ms. Chief now features four arms – each with two white support beams – that hold two massive, retractable nets. Ultimately, SpaceX has augmented Ms. Tree with Ms. Chief in a bid to simultaneously catch both parasailing halves of a Falcon 9 (or Heavy) payload fairing after any given launch, the Holy Grail of the company’s fairing recovery program.
A few days after the above photos were taken, SpaceX successfully installed Ms. Chief’s fairing-catching nets and has since taken the ship a few miles beyond Port Canaveral limits for sea trails – presumably meant to verify center of gravity and other performance characteristics. This may or may not have included tests of the newly-modified ship’s fairing recovery mechanism, referring to what is understood to be a direct link between fairing and ship designed to autonomously guide both to the right position for a catch.
Ensuring that that new hardware and software is in good working order is probably even more important than installing Ms. Chief’s arms and nets, evidenced by the fact that it took SpaceX more than 16 months and five failed attempts before Mr. Steven (now Ms. Tree) successfully caught its first fairing. The first success came on June 25th after Falcon Heavy’s third successful launch.

In an encouraging sign, SpaceX’s very next launch (with a fairing) – Falcon 9’s August 6th AMOS-17 mission – marked the second successful fairing catch ever, suggesting that the breakthrough(s) that enabled that first success may be broadly applicable. SpaceX’s next launch with a payload fairing should essentially confirm whether the company’s fairing recovery program has truly reached the end of the tunnel or if there is some distance still to go.
Since AMOS-17, however, SpaceX has been in the midst of a period of launch inactivity unprecedented since Falcon 9’s catastrophic Amos-6 failure in September 2016, triggering a fleet-grounding that lasted four months. That lull has undoubtedly given SpaceX’s recovery team plenty of time to outfit Ms. Chief and perform shakedowns of the vessel’s new hardware, but it also means that there have been zero opportunities for additional fairing-recovery data gathering.
Mystery and mischief are waiting for it. pic.twitter.com/akgqg29nQf
— Marek Cyzio (@MarekCyzio) October 6, 2019
According to publicly-available launch manifests, SpaceX no longer has firm dates for its next launch(es). Previously expected to be one or even two Starlink launches, those missions are now scheduled to launch sometime in October or November. The Kacific-1 communications satellite currently has a (fairly) firm launch target of November 11th, making the mission the best possible bet for SpaceX’s next launch – at least for the time being.
On the plus side, regardless of when SpaceX is able to break its now two-month-long launch hiatus, it appears extremely likely that said launch will become the first attempt at simultaneously catching both Falcon fairing halves. If successful, it could quite rapidly pave the way towards fast, low-cost fairing reuse, a necessity for the economic deployment of SpaceX’s Starlink satellite internet constellation.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.
Elon Musk
Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk
The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.
Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.
Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.
SpaceX xAI merger
As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.
Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy.
Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.
AI and space infrastructure
A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.
xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.
Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future.