Connect with us

News

SpaceX’s Mr. Steven crosses Panama Canal on 5000 mile journey to Florida

Mr. Steven was spotted by local Panamanian Hugo Tell on February 6th prior to transiting the Panama Canal. (Hugo Tell)

Published

on

Iconic SpaceX vessel Mr. Steven has completed a successful transit of the Panama Canal as of February 7th, leaving the fairing recovery ship approximately 3-4 days from arrival at its new home in Port Canaveral, Florida.

Mr. Steven’s move from the West Coast to the East Coast comes shortly after a series of controlled fairing recovery tests – dropped by helicopter before deploying a parafoil – brought the vessel closer than ever before to successfully snagging a Falcon fairing out of the air. Thanks to webcams at the landmark, Mr. Steven’s trip through the Panama Canal also revealed that his arms were uninstalled for the coast swap, while two fairing halves – covered in tarps – stood out on the ship’s large deck.

Although the presence of two fairing halves could be a sign of something else, it could indicate that SpaceX has plans to continue its controlled fairing drop/recovery tests, albeit this time in the Atlantic Ocean. Thanks to a sharp-eyed local observer, it can be observed that, while topped with tarps and safely secured, the fairing halves aboard Mr. Steven had no additional protection against sea spray and the elements over the course of a 5000+ mile (~8000 km) journey at a cruising speed of roughly 20 mph (~32 km/h). In other words, they are most certainly not going to be reused.

Advertisement
-->

If not for reuse, then the only reason Mr. Steven would need to bring fairings to Florida is if there is some need for fairing recovery development hardware (halves that can be abused without opportunity cost), either for more basic mechanical and interface tests with fairings and nets or to continue SpaceX’s program of experimental drop testing.

Intriguingly, although SpaceX released a second video of “one” of Mr. Steven’s final West Coast catch tests, some basic sleuthing can easily determine that the test shown in the January 29th video probably occurred more than two weeks earlier, on January 10th. This means that one final helicopter drop test was performed (January 26th) before SpaceX departed Port of LA for Florida on the 29th. Some might conclude, then, that SpaceX’s latest drop tweet was more than a little coy, perhaps indicating that the results of the Jan 26 test may have been appreciably different than the extreme near-miss experienced on the 10th.

While the company’s history – combined with CEO Elon Musk’s welcome tendency of sharing good news almost as soon as he hears it – suggests that the Jan 26 test was probably not a success, SpaceX could be playing its development cards close to its chest when it comes to fairing recovery.

Advertisement
-->

Regardless, SpaceX clearly has no plans to end its experimental fairing recovery program with success so agonizingly within reach. Mr. Steven’s move to Florida sets the vessel up for a dramatic increase in available post-launch fairing recovery attempts at the same time as Falcon fairings likely still cost around $3 million apiece and continue to pose the same conundrum Musk raised in mid-2017.

“Imagine if we had a $6 million pallet of cash falling through the sky. Would we try to catch it? I think the answer is yes.” – Elon Musk, July 2017

Although the cost of SpaceX’s fairing recovery program is probably several tens of millions of dollars at this point, it seems probable that Musk would still stand behind his thought experiment. Assuming SpaceX can cost-effectively reuse fairings once recovery is assured, a development program costing upwards of $50-100M could be entirely recouped after just 10-20 dual fairing recoveries, compared to the 21 fairings SpaceX flew in 2018 alone. As long as Falcon 9 and Heavy are likely to continue operating for several more years (all but guaranteed), fairing recovery should still prove worthwhile if SpaceX can close the recovery gap within the next 6-12 months.


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading