Connect with us

News

SpaceX’s Starlink satellites need a software update but Falcon 9 is doing fine

Starlink's v0.9 launch debut has been pushed back ~7 days due to satellite software issues. Falcon 9 B1049 remains all-systems-go. (SpaceX)

Published

on

After wind shear pushed SpaceX’s Starlink launch debut from May 15th to May 16th, issues with satellite software have forced the company to scrub the second attempt, delaying the launch another ~7 days.

For a mission as spectacularly ambitious as SpaceX’s 60-satellite Starlink launch, delays due to those satellites should come as little to no surprise. Given the sheer numbers involved and the fact that this is the first flight-hardware based on SpaceX’s radically redesigned Starlink satellite bus, this scrub is just a part of the process of developing new spacecraft.

For the time being, this scrub can effectively be considered indefinite. Troubleshooting 60 high-performance satellites – some with possible software or hardware faults – could understandably be a very time-consuming process, particularly if these specific spacecraft are closer to a beta-test than an actual final product. Based on comments made by CEO Elon Musk, that is likely the case. As such, troubleshooting hardware/software faults at the launch site while still mated to Falcon 9 will likely provide excellent experience for all involved.

When dealing with the number of satellites SpaceX will need to realize their Starlink constellation, the company will need to be able to handle the anomalies that will inevitably follow the preparation and launch of 1000 or more satellites annually. Starlink v0.9 is simply the first step – albeit a shockingly large one – in that direction.

Falcon 9 B1049 stands at LC-40 ahead of SpaceX’s first dedicated Starlink launch. (SpaceX)

Far more important and far less guaranteed is Falcon 9’s wholly unremarkable flow up to launch. Despite it being SpaceX’s third attempt at launching a Falcon 9 booster three times, Falcon 9 B1049 has remained ready to launch throughout the last ~60 hours of operations. Weather is weather and the first batch of dozens of advanced, custom-built communications satellites will inevitably experience bugs, but Falcon 9’s stoic performance is somewhat less guaranteed.

For Starlink to succeed, the launch component of the equation is going to be just as critical – if not more critical – than ensuring that every single satellite is perfect prior to launch, at least within reason. A failure to act as a good steward of the space debris environment could have major regulatory consequences. However, nothing will kill Starlink faster than unreliable, delay-ridden launches, seemingly an unlikely proposition in SpaceX’s current condition.

Falcon 9 B1049 and 60 Starlink satellites stand vertical and LC-40 prior to their second scrubbed launch attempt. (SpaceX)

So long as Falcon 9 Block 5 remains as reliable and consistent as it has thus far proven to be, even fairly serious issues with aspects of the Starlink constellation itself should be more akin to roadblocks than showstoppers. If all goes well with SpaceX’s aforementioned software updates and triple-checks, Starlink v0.9 could be ready to launch around May 22-24. Stay tuned as SpaceX continues to provide updates.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Samsung’s Tesla AI5/AI6 chip factory to start key equipment tests in March: report

Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant, which will produce Tesla’s next-generation AI5 chip. 

Preparing for Tesla’s AI5/AI6 chips

As per a report by Sina Finance, Samsung Electronics is looking to begin trial operations of extreme ultraviolet (EUV) lithography equipment at its Taylor facility in March. These efforts are reportedly intended to support the full production of Tesla’s AI5 chips starting in the latter half of 2026.

The Taylor factory, Samsung’s first wafer fabrication plant in the United States, covers roughly 4.85 million square meters and is nearing completion. Media reports, citing contractors, have estimated that about 7,000 workers now work on the factory, about 1,000 of whom are reportedly working from the facility’s office building. 

Samsung is reportedly preparing to apply for a temporary occupancy permit, which would allow production to begin before the plant is fully completed.

Tesla’s aggressive AI chip roadmap

Elon Musk recently stated that Tesla’s next-generation AI5 chip is nearly complete, while early development on its successor, AI6, is already underway. Musk shared the update in a post on X, which also happened to be a recruiting message for engineers.

As per Musk, Tesla is looking to iterate its in-house AI chips on an accelerated timeline, with future generations, including AI7, AI8, and AI9, targeting a roughly nine-month design cycle. He also stated that the rapid cadence could allow Tesla’s chips to become the highest-volume AI processors in the world.

Previous reports have indicated that Samsung Electronics would be manufacturing Tesla’s AI5 chip, alongside its rival, Taiwan Semiconductor Manufacturing Company (TSMC). The two suppliers are expected to produce different versions of Tesla’s AI5 chip, with TSMC using a 3nm process and Samsung targeting 2nm production.

Continue Reading

Elon Musk

Elon Musk’s Boring Company studying potential Giga Nevada tunnel: report

The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.

Published

on

the-boring-company-tesla-robotaxi
(Credit: The Boring Company

Elon Musk’s tunneling startup, The Boring Company, has been studying a potential tunnel system connecting Reno to Tesla Gigafactory Nevada, as per documents obtained by Fortune. The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.

Potential Giga Nevada tunnel

Documents reviewed by Fortune showed that The Boring Company received $50,000 in October to produce conceptual designs and a feasibility report for a tunnel beneath a nine-mile stretch of highway leading to Gigafactory Nevada. The payment came from the Economic Development Authority of Western Nevada (EDAWN), a nonprofit that works with the state to attract and expand businesses.

The proposed tunnel was one of several transportation alternatives being explored to address rising congestion and accidents along Interstate 80, which serves the Tahoe-Reno Industrial Center. The massive industrial park houses major employers, including Tesla and Panasonic, both of which had been in contact with the Nevada Governor’s Office regarding potential transportation solutions.

Emails obtained through public records requests showed that Tesla and Panasonic have also supported a separate commuter rail study that would use existing freight rail alongside the Interstate. It remains unclear if The Boring Company’s feasibility report had been completed, and key details for the potential project, including tunnel length, cost, and if autonomous Teslas would be used, were not disclosed.

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

Relieving I-80 congestion

Traffic and accidents along I-80 have increased sharply as data centers and new businesses moved into the 107,000-acre industrial center. State transportation data showed that the number of vehicles traveling certain stretches of the highway during peak hours doubled between January and July 2025 alone. Roughly 22,000 employees commute daily to the industrial park, with nearly 8,000 working for Tesla and more than 4,000 for Panasonic at the Giga Nevada complex.

Bill Thomas, who runs the Regional Transportation Commission of Washoe County, shared his thoughts about safety concerns in the area. “At this point in time, there’s about (one accident) every other day,” he said. He also noted that he is supportive of any projects that could alleviate traffic and accidents on the Interstate. 

Advertisement

“We’re not paying for it. I’m not involved in it. But I understand there are conversations exploring whether that could be done. If there’s a private solution that helps the problem and improves safety, as far as I’m concerned, more power to them,” Thomas stated. 

Continue Reading

News

Tesla might have built redundancies for Cybercab charging

When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging.

Published

on

Credit: @AdanGuajardo/X

A newly spotted panel on Tesla’s Cybercab prototype may point to a practical backup for the vehicle’s wireless charging system as it nears mass production. 

Tesla watchers have speculated that the panel could house a physical NACS port, which would ensure that the autonomous two-seater could operate reliably even before the company’s wireless charging infrastructure is deployed.

Cybercab possible physical charge port

The discussion was sparked by a post on X by Tesla watcher Owen Sparks, who highlighted a rather interesting panel on the Cybercab’s rear. The panel, which seemed to be present in the prototype units that have been spotted across the United States recently, seemed large enough to house a physical charge port.

When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging. Since then, however, Tesla has remained largely quiet about the system’s rollout timeline. With the Cybercab expected to enter production in a few months, equipping the vehicle with a physical NACS port would allow it to charge at Superchargers nationwide without relying exclusively on still-undeployed wireless chargers.

Such an approach would not rule out wireless charging long-term. Instead, it would give Tesla flexibility, allowing the Cybercab to operate immediately at scale while wireless charging solutions are rolled out later. For a vehicle designed to operate continuously and autonomously, redundancy in charging options would be a practical move.

Advertisement

Growing Cybercab sightings

Recent sightings of the Cybercab prototype in Chicago point to the same design philosophy. Images shared on social media showed the vehicle coated in road grime, while its rear camera area appeared noticeably cleaner, with visible traces of water on the trunk.

The observation suggests that the Cybercab is equipped with a rear camera washer. As noted by Model Y owner and industry watcher Sawyer Merritt, this is a feature Tesla owners have requested for years, particularly in snowy or wet climates where dirt and slush can obscure cameras and degrade the performance of systems like FSD.

While only the rear camera washer was clearly visible, the sighting raises the possibility that Tesla may equip additional exterior cameras with similar cleaning systems. For a vehicle that operates without a human driver,  after all, maintaining camera visibility in all conditions is essential. Ultimately, the charge-port speculation and camera-washer sightings suggest Tesla is approaching the Cybercab with practicality in mind.

Advertisement
Continue Reading