Connect with us

News

SpaceX’s first batch of Starlink satellites already in Florida for launch debut

SpaceX's first two Starlink prototype satellites were launched in February 2018. (SpaceX)

Published

on

According to an official statement, SpaceX’s satellite mass production is “well underway” and the first batch of operational Starlink satellites are already in Florida for their May 2019 launch debut.

Simultaneously, the FCC has granted SpaceX’s request to modify the deployment of its first 1584 Starlink satellites, permitting the company to lower their orbit from approximately 1150 km to 550 km (715 mi to 340 mi). A lower insertion orbit should improve Falcon 9’s maximum Starlink payload, while the lower operational orbit will help to further minimize any risk posed by orbital debris that could be generated by failed SpaceX satellites.

Above all else, SpaceX’s confirmation that the first batch of Starlink satellites are already in Florida drives home the reality that the company’s internet satellite constellation is about to become very real. Said constellation has long been the subject of endless skepticism and criticism, dominated by a general atmosphere of dismissal. There is no doubt that Starlink, as proposed, is an extraordinarily ambitious program that will cost billions of dollars to even begin to realize. SpaceX will have to find ways to affordably manufacture and launch ~11,900 satellites – together weighing something like 500 metric tons (1.1 million lbs) – in as few as nine years, start to finish.

As of November 2018, there are roughly 2000 satellites operating in Earth orbit, meaning that SpaceX’s full Starlink constellation would increase the number of functional satellites in orbit by a factor of almost seven. Just the first phase of Starlink (4409 satellites) would more than triple the number of working satellites in orbit. To meet the contractual requirement that SpaceX launch at least half of Starlink’s licensed satellites within six years of the FCC granting the constellation license, the company will need to launch an average of ~37 satellites per month between now and April 2024. By April 2027, SpaceX will either have to launch all ~2200 remaining Phase 1 satellites or risk forfeiture of its Starlink constellation license. Same goes for the ~7500 very low Earth orbit (VLEO) satellites making up Starlink’s second phase, albeit with their launch deadlines instead in November of 2024 and 2027.

An unofficial analysis of SpaceX’s first ~1600 Starlink satellites. (Mark Handley)

In fact, if SpaceX wants to preserve the separate FCC license for its VLEO Starlink segment, it will actually need to build and launch an average of 100 satellites per month – 20+ per week – for the next five years. In no way, shape, or form is the monthly production of 100 complex pieces of machinery unprecedented. It is, however, entirely unprecedented – and by a factor of no less than 10 – in the spaceflight and satellite industries. Accomplishing that feat will require numerous paradigm shifts in satellite design, manufacturing, and operations. It’s hard to think of anyone more up to the challenge than SpaceX but it will still be an immensely difficult and expensive undertaking.

“Baby” steps

According to SpaceX, the first 75 operational Starlink satellites will be significantly less refined than those that will follow. Most notably, they will eschew dual-band (Ku and Ka) phased array antennas, instead relying solely on Ka-band communications. The second main difference between relates to “demisability”, referring to characteristics exhibited during reentry. The first 75 spacecraft will be less refined and thus feature a handful of components that are expected to survive the rigors of reentering Earth’s atmosphere, creating a truly miniscule risk of property damage and/or human injuries. Subsequent Starlink vehicles will incorporate design changes to ensure that 100% of each satellite is incinerated during reentry, thus posing a ~0% risk on the ground.

In a sense, the first 75 Starlink satellites will be an in-depth demonstration of SpaceX’s proposed constellation. Depending on how the satellites are deployed in orbit, SpaceX’s development team could potentially have uninterrupted access to the orbiting mini-constellation. There will also be constant opportunities to thoroughly test SpaceX’s network architecture for real, including general downlink/uplink traffic, surge management, satellite handoffs, and the laser interlinks meant to join all Starlink satellites into one giant mesh network.

One of the first two prototype Starlink satellites separates from Falcon 9’s upper stage, February 2018. (SpaceX)

SpaceX has yet to announce the precise number of Starlink satellites that will be aboard Falcon 9 on the rocket’s first dedicated internal launch. More likely than not, the constraining factor will be the usable volume of SpaceX’s payload fairing, measuring 5.2m (17 ft) in diameter. For Flight 1, 10-20 satellites is a reasonable estimate. Likely to weigh around 10,000 kg (22,000 lb) total, the first Starlink payload will be delivered to a parking orbit of ~350 km (220 mi), easily allowing Falcon 9 to return to SpaceX’s Florida Landing Zone or perform a gentle landing aboard drone ship Of Course I Still Love You (OCISLY). The satellites will use their own electric Hall thrusters to reach their final destination (550 km).

According to SpaceX CEO Elon Musk, the first Falcon 9 fairing reuse may also happen during an internal Starlink launch, although it’s unclear if he was referring to Starlink Launch 1 (Starlink-1) or a follow-up mission later this year.

For now, SpaceX is targeting a mid-May for its first dedicated Starlink mission, set to launch from Launch Complex 40 (LC-40). Up next for LC-40 is SpaceX’s 17th operational Cargo Dragon launch (CRS-17), delayed from April 26th and April 30th to May 3rd.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading