Connect with us

News

SpaceX begins assembling first Starship Super Heavy booster in South Texas

SpaceX appears to have begun assembling Starship's first Super Heavy booster - set to be the largest in the world. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has taken the first unequivocal step towards orbital Starship launches, kicking off assembly of the first Super Heavy booster (first stage) – a necessity for recoverable spaceship missions to Earth orbit and beyond.

Although SpaceX could technically get away with building much smaller booster prototypes to support Starship’s initial orbital test flights, perhaps going as far as simply modifying Starship’s proven tank design, rocketry really doesn’t lend itself to modularity. Be it out of confidence or necessity, SpaceX appears to be moving directly from Starship prototype development to full-scale Super Heavy booster production and testing.

The first conveniently labeled Super Heavy booster rings were spotted around September 22nd. In the six or so weeks since then, SpaceX’s Boca Chica, Texas factory has relentlessly churned out at least as many sections of stacked booster rings – now strewn about the ever-growing campus. No less than seven labeled Super Heavy ring sections have been spotted since the first, equating to fewer than 25 steel rings of the estimated 38-40 needed to complete each booster.

The first Super Heavy rings – labeled “COMMON BARREL ASSY – BOOSTER” – were spotted on September 22nd. (NASASpaceflight – bocachicagal)
Six stacks of steel rings – all likely meant for the first Super Heavy – are pictured here on October 29th. (NASASpaceflight – bocachicagal)
On November 8th, SpaceX moved two stacks of four steel rings inside a custom Super Heavy assembly building within a few hours of each other. (NASASpaceflight – bocachicagal)

Relying on a tank design almost identical to hardware flight-proven on two separate Starship prototypes, SpaceX is able to use the exact same manufacturing infrastructure for the vast majority of Starship and Super Heavy. In fact, in a flip of the usual relationship, the next-generation rocket’s booster will most likely be far simpler than the upper stage – nominally the largest reusable spacecraft and upper stage ever attempted.

Without the need for a tiled heat shield, a conical nose section, aerodynamic control surfaces (beyond Falcon-style grid fins), or even (perhaps) internal header tanks, the only major challenge unique to Super Heavy is the development of an engine section capable of supporting and feeding as many as 28 Raptor engines. In other words, as long as the basics of Starship are successful and SpaceX is able to design a reliable 28-Raptor thrust structure and associated plumbing, Super Heavy may actually be a much easier problem to solve.

Theory aside, Starship and Super Heavy will unequivocally be the largest spacecraft, upper stage, and rocket booster ever built regardless of their success. While CEO Elon Musk recently stated that a Super Heavy booster could perform hop tests with just two Raptor engines, if necessary, the rocket is ultimately expected to have 20 high-thrust Raptors with minimal throttle capability and an inner ring of eight throttleable, gimballing engines for precision maneuvers.

With all 28 engines operating at full thrust, that particular Super Heavy design would produce an immense 6600 metric tons (14.5 million lbf) of thrust at liftoff – approximately twice the thrust of Saturn V and Soviet N-1 rockets and more than three times the thrust of SpaceX’s own Falcon Heavy. Measuring ~70m (~230 ft) tall, Super Heavy would weigh at least 3500 metric tons (7.7 million lb) fully loaded with liquid oxygen and methane propellant and – on its own – stand as tall or taller than Falcon 9, Falcon Heavy, and any other operational rocket on Earth.

Advertisement
-->

Now effectively inaugurated with the first Super Heavy booster (“BN1,” according to SpaceX) hardware, the ~83m (~270 ft) tall high bay will likely be in a near-constant state of activity as teams work to stack and weld the massive steel rocket. Essential to support Starship’s first recoverable orbital launch attempts, it remains to be seen how exactly SpaceX will put the first completed Super Heavy through its paces and what the first booster-supported Starship launches will look like. Regardless, barring major surprises during assembly, Super Heavy booster #1 (BN1) could be more or less complete just a month or two from now.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla AI Head says future FSD feature has already partially shipped

Published

on

Credit: Tesla

Tesla’s Head of AI, Ashok Elluswamy, says that something that was expected with version 14.3 of the company’s Full Self-Driving platform has already partially shipped with the current build of version 14.2.

Tesla and CEO Elon Musk have teased on several occasions that reasoning will be a big piece of future Full Self-Driving builds, helping bring forth the “sentient” narrative that the company has pushed for these more advanced FSD versions.

Back in October on the Q3 Earnings Call, Musk said:

“With reasoning, it’s literally going to think about which parking spot to pick. It’ll drop you off at the entrance of the store, then go find a parking spot. It’s going to spot empty spots much better than a human. It’s going to use reasoning to solve things.”

Musk said in the same month:

“By v14.3, your car will feel like it is sentient.”

Amazingly, Tesla Full Self-Driving v14.2.2.2, which is the most recent iteration released, is very close to this sentient feeling. However, there are more things that need to be improved, and logic appears to be in the future plans to help with decision-making in general, alongside other refinements and features.

On Thursday evening, Elluswamy revealed that some of the reasoning features have already been rolled out, confirming that it has been added to navigation route changes during construction, as well as with parking options.

He added that “more and more reasoning will ship in Q1.”

Interestingly, parking improvements were hinted at being added in the initial rollout of v14.2 several months ago. These had not rolled out to vehicles quite yet, as they were listed under the future improvements portion of the release notes, but it appears things have already started to make their way to cars in a limited fashion.

Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad

As reasoning is more involved in more of the Full Self-Driving suite, it is likely we will see cars make better decisions in terms of routing and navigation, which is a big complaint of many owners (including me).

Additionally, the operation as a whole should be smoother and more comfortable to owners, which is hard to believe considering how good it is already. Nevertheless, there are absolutely improvements that need to be made before Tesla can introduce completely unsupervised FSD.

Continue Reading

Elon Musk

Tesla’s Elon Musk: 10 billion miles needed for safe Unsupervised FSD

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

Published

on

Credit: @BLKMDL3/X

Tesla CEO Elon Musk has provided an updated estimate for the training data needed to achieve truly safe unsupervised Full Self-Driving (FSD). 

As per the CEO, roughly 10 billion miles of training data are required due to reality’s “super long tail of complexity.” 

10 billion miles of training data

Musk comment came as a reply to Apple and Rivian alum Paul Beisel, who posted an analysis on X about the gap between tech demonstrations and real-world products. In his post, Beisel highlighted Tesla’s data-driven lead in autonomy, and he also argued that it would not be easy for rivals to become a legitimate competitor to FSD quickly. 

“The notion that someone can ‘catch up’ to this problem primarily through simulation and limited on-road exposure strikes me as deeply naive. This is not a demo problem. It is a scale, data, and iteration problem— and Tesla is already far, far down that road while others are just getting started,” Beisel wrote. 

Musk responded to Beisel’s post, stating that “Roughly 10 billion miles of training data is needed to achieve safe unsupervised self-driving. Reality has a super long tail of complexity.” This is quite interesting considering that in his Master Plan Part Deux, Elon Musk estimated that worldwide regulatory approval for autonomous driving would require around 6 billion miles. 

Advertisement
-->

FSD’s total training miles

As 2025 came to a close, Tesla community members observed that FSD was already nearing 7 billion miles driven, with over 2.5 billion miles being from inner city roads. The 7-billion-mile mark was passed just a few days later. This suggests that Tesla is likely the company today with the most training data for its autonomous driving program. 

The difficulties of achieving autonomy were referenced by Elon Musk recently, when he commented on Nvidia’s Alpamayo program. As per Musk, “they will find that it’s easy to get to 99% and then super hard to solve the long tail of the distribution.” These sentiments were echoed by Tesla VP for AI software Ashok Elluswamy, who also noted on X that “the long tail is sooo long, that most people can’t grasp it.”

Continue Reading

News

Tesla earns top honors at MotorTrend’s SDV Innovator Awards

MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Published

on

Credit: Tesla China

Tesla emerged as one of the most recognized automakers at MotorTrend’s 2026 Software-Defined Vehicle (SDV) Innovator Awards.

As could be seen in a press release from the publication, two key Tesla employees were honored for their work on AI, autonomy, and vehicle software. MotorTrend’s SDV Awards were presented during CES 2026 in Las Vegas.

Tesla leaders and engineers recognized

The fourth annual SDV Innovator Awards celebrate pioneers and experts who are pushing the automotive industry deeper into software-driven development. Among the most notable honorees for this year was Ashok Elluswamy, Tesla’s Vice President of AI Software, who received a Pioneer Award for his role in advancing artificial intelligence and autonomy across the company’s vehicle lineup.

Tesla also secured recognition in the Expert category, with Lawson Fulton, a staff Autopilot machine learning engineer, honored for his contributions to Tesla’s driver-assistance and autonomous systems.

Tesla’s software-first strategy

While automakers like General Motors, Ford, and Rivian also received recognition, Tesla’s multiple awards stood out given the company’s outsized role in popularizing software-defined vehicles over the past decade. From frequent OTA updates to its data-driven approach to autonomy, Tesla has consistently treated vehicles as evolving software platforms rather than static products.

Advertisement
-->

This has made Tesla’s vehicles very unique in their respective sectors, as they are arguably the only cars that objectively get better over time. This is especially true for vehicles that are loaded with the company’s Full Self-Driving system, which are getting progressively more intelligent and autonomous over time. The majority of Tesla’s updates to its vehicles are free as well, which is very much appreciated by customers worldwide.

Continue Reading