Connect with us

News

SpaceX returns to Starship program roots with new ‘test tank’ prototype

Similar to test tanks SN2 (pictured here) and SN7.1, Starship test tank SN7.2 is partially focused on qualifying changes to the rocket's complex thrust dome. (NASASpaceflight - bocachicagal)

Published

on

It’s now clear that SpaceX is preparing to return to the roots of its Starship program with the latest in a series of one-off ‘test tanks’ meant to qualify upgrades to the rocket’s design and production.

Likely known as Starship SN7.2, the hardware will be the first standalone tank built and tested by SpaceX since SN7.1 was successfully pressurized to failure in a process known as burst testing in September 2020. Following in the footsteps of SN7.1, a simple test tank fully focused on qualifying a change in the steel alloy used to build Starships, SN7.2 was somewhat more complex, swapping one of two smooth forward domes with a thrust dome and adding a ‘skirt’ section.

Built out of the same steel alloy as SN7.1, SN7.2 went through similar testing but included the use of a hydraulic ram designed to simulate the thrust of one, two, or three Raptors on the ‘thrust puck’ those engines would otherwise attach to. Starship test tank SN7.2 appears to be quite similar to SN7.1 – but with one or two crucial differences.

SpaceX is gearing up for another round of destructive Starship tank testing to qualify design and manufacturing upgrades. (NASASpaceflight – bocachicagal)

The first difference, as noted above, is a reduction in the thickness of the steel rings that make up the outer walls and structure of SN7.2’s barrel-like tank section. SpaceX is believed to have reduced that skin thickness by 25% (4mm to 3mm) in an apparent effort to begin a weight reduction process necessary for Starships to eventually achieve their optimal payload goal of ~150 metric tons (~330,000 lb) to low Earth orbit.

4mm Starship test tank SN7.0, June 2020. (NASASpaceflight – bocachicagal)
Starship test tank SN7.2 sections (center, right) and SN15’s forward dome assembly. (NASASpaceflight – bocachicagal)

From some angles, SN7.2’s steel rings do appear slightly flimsier or more liable to warp from the heat of welding than other test tanks in the SN7 range, but the differences are rather subtle. Regardless, a reduction from 4mm to 3mm steel rings could likely cut 5-10% from an orbit-capable Starship’s empty weight. When every gram of Starship mass reduction translates directly into an extra gram of payload, it’s safe to say that SpaceX is just getting started.

It’s unclear if a successful SN7.2 test campaign will result in similar reductions to the steel that makes up Starship tank domes and noses. SN7.2’s forward and thrust domes appear to be more or less identical to almost all prior Starship prototype hardware.

Aside from thinner steel skin, it’s also possible that SpaceX will attempt to hit two birds with one stone and test a second unproven change on SN7.2 – namely an upgraded ‘thrust puck’ design. That new puck design first appeared on a November 2020 shipment from SpaceX’s Hawthorne, CA headquarters. Referring to the cone-like structure Starship’s three central Raptor engines attach to and are fed propellant through, the new design simplifies plumbing complexity by allowing Starship’s fuel and fuel header tanks to attach directly to and feed methane through the puck.

SpaceX’s upgraded thrust puck design is likely to debut on Starship SN15 or a fourth SN7 test tank. (NASASpaceflight – bocachicagal)
SN10’s thrust puck appears a bit more complex, although it accomplishes the same task. (NASASpaceflight – bocachicagal)

It’s unclear which thrust puck design SN7.2 has settled on, though SpaceX’s decision to make SN7.2 an engine section test tank arguably points towards the new puck. Regardless, SpaceX will almost certainly install a skirt section – two reinforced rings – underneath SN7.2 once the tank is welded together, giving it the hold-down clamps needed to secure it to a launch mount while simulating Raptor thrust.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla finishes its biggest Supercharger ever with 168 stalls

Published

on

Credit: Tesla Charging | X

Tesla has finished construction at its biggest Supercharger ever in Lost Hills, California, and all 168 stalls are officially open as of today.

After several years of development, the company has officially announced that the Lost Hills Supercharger, known as Project Oasis, is officially open with 168 stalls active and available to drivers.

Tesla announced the completion of the Lost Hills Supercharger on Tuesday, showing off the site, which is powered by 10 Megapack batteries for storage and is completely independent of the grid, as it has 11 MW of solar panels bringing energy to the massive Battery Energy Storage System (BESS).

This is the largest Supercharger in the world and opens just in time for the Thanksgiving holiday, which is the most-traveled weekend of the year in the United States.

Spanning across 30 acres, it was partially opened back in July 2025 as Tesla opened just 84 of the 168 stalls at the site. However, Tesla finished certifying the site recently, which enabled the Supercharger to open up completely.

The site generates roughly 20 GWh of energy annually, which is enough to power roughly 1,700 homes. The launch of this site specifically is massive for the company as it plans to launch more Superchargers in more rural areas, making charging more available for cross-country rides that require stops in more remote regions of the United States.

This is perhaps the only weak point of Tesla’s massive charging infrastructure.

It has some features that are also extremely welcome for some owners, including things like pull-through stalls for those who tow, an idea that was extremely popular following the launch of the Cybertruck.

Tesla has over 70,000 active Superchargers across the world. The company has also made efforts to create unique experiences at some of the stops, most notably with its Tesla Diner, located on Santa Monica Boulevard in Los Angeles.

That Supercharger has two massive drive-in movie theaters and will soon transition to a full-service restaurant following the departure of its executive chef, Eric Greenspan.

Continue Reading

Elon Musk

Elon Musk proposes Grok 5 vs world’s best League of Legends team match

Musk’s proposal has received positive reception from professional players and Riot Games alike.

Published

on

UK Government, CC BY 2.0 , via Wikimedia Commons

Elon Musk has proposed a high-profile gaming challenge for xAI’s upcoming Grok 5. As per Musk, it would be interesting to see if the large language model could beat the world’ best human League of Legends team with specific constraints.

Musk’s proposal has received positive reception from professional players and Riot Games alike, suggesting that the exciting exhibition match might indeed happen. 

Musk outlines restrictions for Grok

In his post on X, Musk detailed constraints to keep the match competitive, including limiting Grok to human-level reaction times, human-speed clicking, and viewing the game only through a camera feed with standard 20/20 vision. The idea quickly circulated across the esports community, drawing commentary from former pros and AI researchers, as noted in a Dexerto report.

Former League pro Eugene “Pobelter” Park expressed enthusiasm, offering to help Musk’s team and noting the unique comparison to past AI-versus-human breakthroughs, such as OpenAI’s Dota 2 bots. AI researcher Oriol Vinyals, who previously reached Grandmaster rank in StarCraft, suggested testing Grok in RTS gameplay as well. 

Musk welcomed the idea, even responding positively to Vinyals’ comment that it would be nice to see Optimus operate the mouse and keyboard.

Advertisement
-->

Pros debate Grok’s chances, T1 and Riot show interest

Reactions weren’t universally optimistic. Former professional mid-laner Joedat “Voyboy” Esfahani argued that even with Grok’s rapid learning capabilities, League of Legends requires deep synergy, game-state interpretation, and team coordination that may be difficult for AI to master at top competitive levels. Yiliang “Doublelift” Peng was similarly skeptical, publicly stating he doubted Grok could beat T1, or even himself, and jokingly promised to shave his head if Grok managed to win.

T1, however, embraced the proposal, responding with a GIF of Faker and the message “We are ready,” signaling their willingness to participate. Riot Games itself also reacted, with co-founder Marc Merrill replying to Musk with “let’s discuss.” Needless to say, it appears that Riot Games in onboard with the idea.

Though no match has been confirmed, interest from players, teams, and Riot suggests the concept could materialize into a landmark AI-versus-human matchup, potentially becoming one of the most viewed League of Legends events in history. The fact that Grok 5 will be constrained to human limits would definitely add an interesting dimension to the matchup, as it could truly demonstrate how human-like the large language model could be like in real-time scenarios.

Tesla has passed a key milestone, and it was one that CEO Elon Musk initially mentioned more than nine years ago when he published Master Plan, Part Deux. 

As per Tesla China in a post on its official Weibo account, the company’s Autopilot system has accumulated over 10 billion kilometers of real-world driving experience.

Tesla China’s subtle, but huge announcement

In its Weibo post, Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience. “In this respect, Tesla vehicles equipped with Autopilot technology can be considered to have the world’s most experienced and seasoned driver.” 

Advertisement
-->

Tesla AI’s handle on Weibo also highlighted a key advantage of the company’s self-driving system. “It will never drive under the influence of alcohol, be distracted, or be fatigued,” the team wrote. “We believe that advancements in Autopilot technology will save more lives.”

Tesla China did not clarify exactly what it meant by “Autopilot” in its Weibo post, though the company’s intense focus on FSD over the past years suggests that the term includes miles that were driven by FSD (Beta) and Full Self-Driving (Supervised). Either way, 10 billion cumulative miles of real-world data is something that few, if any, competitors could compete with.

Advertisement

–>

Credit: Tesla China/Weibo

Elon Musk’s 10-billion-km estimate, way back in 2016

When Elon Musk published Master Plan Part Deux, he outlined his vision for the company’s autonomous driving system. At the time, Autopilot was still very new, though Musk was already envisioning how the system could get regulatory approval worldwide. He estimated that worldwide regulatory approval will probably require around 10 billion miles of real-world driving data, which was an impossible-sounding amount at the time. 

“Even once the software is highly refined and far better than the average human driver, there will still be a significant time gap, varying widely by jurisdiction, before true self-driving is approved by regulators. We expect that worldwide regulatory approval will require something on the order of 6 billion miles (10 billion km). Current fleet learning is happening at just over 3 million miles (5 million km) per day,” Musk wrote. 

Advertisement
-->

It’s quite interesting but Tesla is indeed getting regulatory approval for FSD (Supervised) at a steady pace today, at a time when 10 billion miles of data has been achieved. The system has been active in the United States and has since been rolled out to other countries such as Australia, New Zealand, China, and, more recently, South Korea. Expectations are high that Tesla could secure FSD approval in Europe sometime next year as well. 

Continue Reading

News

Elon Musk’s Boring Company reveals Prufrock TBM’s most disruptive feature

As it turns out, the tunneling startup, similar to other Elon Musk-backed ventures, is also dead serious about pursuing reusability.

Published

on

The Boring Company has quietly revealed one of its tunnel boring machines’ (TBMs) most underrated feature. As it turns out, the tunneling startup, similar to other Elon Musk-backed ventures, is also dead serious about pursuing reusability.

Prufrock 5 leaves the factory

The Boring Company is arguably the quietest venture currently backed by Elon Musk, inspiring far fewer headlines than his other, more high-profile companies such as Tesla, SpaceX, and xAI. Still, the Boring Company’s mission is ambitious, as it is a company designed to solve the problem of congestion in cities.

To accomplish this, the Boring Company would need to develop tunnel boring machines that could dig incredibly quickly. To this end, the startup has designed Prufrock, an all-electric TBM that’s designed to eventually be fast enough as an everyday garden snail. Among TBMs, such a speed would be revolutionary. 

The startup has taken a step towards this recently, when The Boring Company posted a photo of Prufrock-5 coming out of its Bastrop, Texas facility. “On a rainy day in Bastrop, Prufrock-5 has left the factory. Will begin tunneling by December 1.  Hoping for a step function increase in speed,” the Boring Company wrote.

Prufrock’s quiet disruption

Interestingly enough, the Boring Company also mentioned a key feature of its Prufrock machines that makes them significantly more sustainable and reusable than conventional TBMs. As per a user on X, standard tunnel boring machines are often left underground at the conclusion of a project because retrieving them is usually more expensive and impractical than abandoning them in the location. 

Advertisement
-->

As per the Boring Company, however, this is not the case for its Prufrock machines, as they are retrieved, upgraded, and deployed again with improvements. “All Prufrocks are reused, usually with upgrades between launches. Prufrock-1 has now dug six tunnels,” the Boring Company wrote in its reply on X.

The Boring Company’s reply is quite exciting as it suggests that the TBMs from the tunneling startup could eventually be as reusable as SpaceX’s boosters. This is on brand for an Elon Musk-backed venture, of course, though the Boring Company’s disruption is a bit more underground. 

Continue Reading