Connect with us

News

SpaceX Starship rocket could move to the launch pad today

SpaceX has completed the last major stacking milestone for its next Starship prototype, likely just a day or two away from heading to the launch pad. (NASASpaceflight - bocachicagal)

Published

on

SpaceX has finished stacking its fourth full-scale Starship prototype and public schedules show that the rocket could be moved to a nearby launch and test pad as early as April 20th.

Known as Starship serial number 4 (SN4), the rocket will be the third full-scale vehicle completed since the start of serial production, while Starship Mk1 – the first full-scale prototype – was built far more slowly and with different methods. Mk1 was destroyed during one of its first cryogenic liquid nitrogen ‘proof’ tests in November 2019, nearly nine months after assembly began in February. After Mk1’s failure, SpaceX spent about two months rapidly expanding and upgrading its Boca Chica, Texas Starship factory.

Around the end of January 2020, SpaceX kicked off the production of its first serial prototype – logically deemed SN1. Less than a month after its first steel rings were stacked and welded together, SpaceX transported the completed prototype to the launch pad. On February 28th, what CEO Elon Musk later described as a fault in its engine section “thrust puck” destroyed Starship SN1 during one of its first cryogenic proof tests. Barely a month later and after SN2 was modified into a “thrust puck” test tank and successfully tested, Starship SN3 rolled to the launch pad and was destroyed by operator and test design errors on April 3rd. Now, barely two weeks after SN3, Starship SN4 is about to begin testing.

SpaceX finished stacking its fourth full-scale Starship prototype on April 17th. (NASASpaceflight – bocachicagal)

By all appearances, work on Starship SN4 began around March 23rd, continuing a production schedule that has been consistently completing a full-scale rocket prototype every four or so weeks. While SpaceX has taken the unprecedented step of reusing a section of a prototype (SN3) destroyed during testing, every other aspect of the rocket is new and built more or less from scratch.

Starship SN3’s skirt – including internal plumbing, landing legs, and more – was removed from the rest of the ship’s remains and moved back to the build site on April 7th. (NASASpaceflight – bocachicagal)
SpaceX stacked Starship SN4’s new engine section and SN3’s salvaged skirt and landing legs around April 15th. (NASASpaceflight – bocachicagal)

Just two days after Starship SN3’s salvaged skirt and SN4’s new engine section and aft liquid oxygen tank dome were stacked and welded together, SpaceX technicians attached a crane to the upper two-thirds of the rocket’s tank section and stacked it on top of the newly-finished engine section. 24 hours later, SpaceX teams have completed at least one circumferential seam weld, with a second soon to be finished.

Once that last weld is complete and passes inspections, Starship SN4 will be ready to be lifted onto a transporter and rolled down the road to SpaceX’s dedicated launch and test facilities. Of course, like SN3 and SN1 before it, SpaceX will likely still have a few days of work to get Starship SN4 ready for testing once it’s been moved to the pad.

Advertisement
Starship SN3 was fully stacked on March 26th and was transported to the launch pad on March 28th, while pad testing began on April 2nd. (Elon Musk)
Starship SN4 was fully stacked on April 17th. (NASASpaceflight – bocachicagal)

Using Starship SN3’s timeline, Starship SN4 could be transported to the pad as early as April 19th or 20th and ready for testing by April 24th or 25th. This meshes well with a publicly-available road closure schedule, required because SpaceX often needs to close a public highway for certain Starship transport and testing operations. Per Cameron County’s website, SpaceX has a transport-related closure planned on April 20th. The first testing-related closure begins on Sunday, April 26th and lasts from 9am to midnight, with backups on Monday and Tuesday.

As always, delays should come as no surprise with prototype testing, and schedules are always fluid and liable to change at any second. Regardless, it looks like Starship SN4 is perhaps just a week from its first round of testing.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Giga Berlin plant manager faces defamation probe after IG Metall union complaint

Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig.

Published

on

Credit: @Gf4Tesla/X

Tesla’s Giga Berlin plant manager is now under investigation after a complaint from trade union IG Metall, escalating tensions ahead of next month’s works council elections. 

Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig, as per a report from rbb24.

A spokesperson for the Frankfurt (Oder) public prosecutor’s office confirmed to the German Press Agency that an investigation for defamation has been initiated following a criminal complaint filed by IG Metall against Thierig.

The dispute stems from Tesla’s allegation that an IG Metall representative secretly recorded a works council meeting using a laptop. In a post on X, Thierig described the incident as “truly beyond words,” stating that police were called and a criminal complaint was filed.

Advertisement

“What has happened today at Giga Berlin is truly beyond words! An external union representative from IG Metall attended a works council meeting. For unknown reasons, he recorded the internal meeting and was caught in action! We obviously called police and filed a criminal complaint!” Thierig wrote in a post on X.

Police later confirmed that officers did seize a computer belonging to an IG Metall member at Giga Berlin. Prosecutors are separately investigating the union representative on suspicion of breach of confidentiality and violation of Germany’s Works Constitution Act.

IG Metall has denied Tesla’s allegations. The union claimed that its member offered to unlock the laptop for review in order to accelerate the investigation and counter what it called false accusations. The union has also sought a labor court injunction to “prohibit Thierig from further disseminating false claims.”

The clash comes as Tesla employees prepare to vote in works council elections scheduled for March 2–4, 2026. Approximately 11,000 Giga Berlin workers are eligible to participate in the elections.

Advertisement
Continue Reading

News

Tesla wins FCC approval for wireless Cybercab charging system

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.

Published

on

Credit: Tesla AI/X

Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system. 

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.

Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”

The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”

Advertisement

Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”

Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”

As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.

While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.

Advertisement

Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.

DA-26-168A1 by Simon Alvarez

Advertisement
Continue Reading

Elon Musk

Tesla posts updated FSD safety stats as owners surpass 8 billion miles

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles. 

Tesla shared the milestone in a post on its official X account.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading