News
SpaceX fires up Starship rocket twice in 30 hours ahead of next big tests
SpaceX has successfully fired up a full-scale Starship rocket for the second time in barely 30 hours and removed the ship’s Raptor engine to perform an additional suite of “cryo testing”.
Around 7pm CDT on May 6th, SpaceX technicians began loading the fourth full-scale Starship with liquid oxygen and methane, filling up a large portion of its massive propellant tanks. Just the latest in a line of several tests involving wet dress rehearsals (WDR) completed in the days prior, this test would soon become exceptional. About an hour and a half after work began, Starship SN4’s lone Raptor engine ignited and burned for ~3 seconds, marking the first time in history a next-generation SpaceX rocket truly came alive with one of the engines designed to take it all the way to orbit.
In line with tests performed with Starhopper – a low-fidelity, subscale tested that flew twice with Raptor – last year, it would have been business as usual if SpaceX had called it a day and moved on to something else with Starship SN4. Instead, Starship performed another WDR and fired up its Raptor engine for a second time in just 30 hours after SpaceX teams inspected the rocket and cleared it for another round. It’s unknown why two back-to-back static fires were performed but, to be clear, every step Starship SN4 takes forward is a step into uncharted territory. Already, the ship’s next steps could come as soon as Friday, May 8th.
According to CEO Elon Musk, SpaceX’s second Starship SN4 static fire test was completed successfully and actually marked the operational debut of a critical aspect of the next-generation launch vehicle and spacecraft. Known as header tanks, Starship needs two smaller secondary propellant tanks to complement its main tanks, a need driven mainly by the challenges of landing such a large and mobile spacecraft. Smaller header tanks will also make it dramatically easier for SpaceX to insulate cryogenic propellant and ensure it remains liquid over long-duration cruises in space, but safe and reliable landings are a more pressing concern for these early prototypes.
During landing operations, the main benefits smaller header tanks offer are relative ease of pressurization (needed to safely feed Raptor engines) and a much lower risk of issues from sloshing, which can introduce bubbles and voids that can obliterate rocket engines if ingested. Impressively, per Musk, Starship SN4 completed its second static fire test using its internal liquid methane header tank – a sort of bubble attached to the bottom of the main methane tank dome.


Starship’s liquid oxygen header tank is situated at the tip of the conical nose section, a part that all full-scale ships have been tested without thus far. However, the use of the fuel header tank on May 7th means that Starship SN4 already has a functional, plumbed header tank installed, verifying the partial functionality of a critical part of the next-generation launch vehicle. A second static fire will have also provided SpaceX a wealth of extra data about Raptor’s performance while installed on Starship, invaluable at such an early stage of integrated testing.
Two Starship static fires now under its belt, SpaceX removed SN4’s Raptor engine around 12 hours after its second test and returned it to storage at the company’s nearby factory facilities. According to public notices provided by Cameron County, Texas officials, SpaceX’s next Starship SN4 activity is expected to occur on May 8th with backup windows on the 9th and 10th and will involve “cryo testing”.


The most obvious conclusion is that SpaceX – having completed enough static fire testing to verify Starship SN4’s performance – now wants to really put the rocket through its paces with another cryogenic test. Completed on April 26th, the ship’s first cryogenic ‘proof’ test maxed out at around 4.9 bar (70 psi), enough for low-stress hop tests but well short of the sustained pressure needed for orbital spaceflight. While testing singular propellant tanks in the first few months of 2020, Musk revealed that SpaceX was targeting a minimum of 6 bar (~90 psi) for orbital Starship flights – ~8 bar (115 psi) with a 25% safety factor.

The company actually achieved 8.4 bar with one of its Starship test tanks, the same processes of which were used to build Starship SN4, but a full-scale ship has yet to demonstrate those pressures. Now, SpaceX already has a fifth full-scale prototype (Starship SN5) likely just a week or so away from pad readiness, meaning that Starship SN4’s potential destruction during pressure testing wouldn’t have a big impact on plans for a series of imminent flight tests. If SN4 survives pressure testing, it would likely have its Raptor engine reinstalled and move on to a 150m (500 ft) hop test.
Elon Musk
SpaceX blocks unauthorized Starlink terminals used by Russian troops
Ukrainian officials confirmed that Starlink terminals believed to be used by Russian troops were disabled after coordination with SpaceX.
SpaceX has taken steps to block unauthorized use of its Starlink satellite internet network, a move Ukrainian officials stated is already disrupting Russian military communications.
Russian units lose a key communications tool
As per a report from The Guardian, Ukrainian defense officials have confirmed that Starlink terminals believed to be used by Russian troops were recently disabled after coordination with SpaceX. The move reportedly affected frontline communications and drone operations, especially in areas where traditional military radios are unreliable or easily jammed.
For months, Russian units had relied on large numbers of illicitly obtained Starlink terminals to stay connected along the front. The satellite internet service allowed faster coordination and more precise drone use for Russian forces.
Several Russian military bloggers close to frontline units have acknowledged the impact of the Starlink shutdown, with some describing sudden connectivity problems in the satellite internet service.
Russia lacks comparable replacement
Russia does not have a satellite internet system that matches Starlink’s speed, coverage, and ease of deployment. Alternatives such as fiber-optic lines, short-range wireless links, and digital radio systems take longer to install and work inadequately for fast-moving units.
Russia does operate limited satellite communications through state-linked providers, but those systems rely mainly on geostationary satellites, which are notably slower. Coverage is uneven, and data capacity is far lower than Starlink’s low-Earth-orbit network.
For now, Ukraine has stated that it has introduced a verification system that allows only approved Starlink terminals to connect. Devices believed to be linked to Russian forces are blocked from the network. That being said, Ukrainian officials have also claimed Russian units are trying to work around the restrictions by asking civilians to register Starlink terminals in their names.
News
Tesla Semi pricing revealed after company uncovers trim levels
This is a step up from the prices that were revealed back in 2017, but with inflation and other factors, it is no surprise Tesla could not come through on the numbers it planned to offer nine years ago. When the Semi was unveiled in November 2017, Tesla had three pricing levels:
Tesla Semi pricing appears to have been revealed after the company started communicating with the entities interested in purchasing its all-electric truck. The pricing details come just days after Tesla revealed it planned to offer two trim levels and uncovered the specs of each.
After CEO Elon Musk said the Semi would enter volume production this year, Tesla revealed trim levels shortly thereafter. Offering a Standard Range and a Long Range trim will fit the needs of many companies that plan to use the truck for local and regional deliveries.
Tesla Semi lines up for $165M in California incentives ahead of mass production
It will also be a good competitor to the all-electric semi trucks already available from companies like Volvo.
With the release of specs, Tesla helped companies see the big picture in terms of what the Semi could do to benefit their business. However, pricing information was not available.
A new report from Electrek states that Tesla has been communicating with those interested companies and is pricing the Standard Range at $250,000 per unit, while the Long Range is priced at $290,000. These prices come before taxes and destination fees.
$TSLA – TESLA IS QUOTING $290,000 FOR ITS 500-MILES ELECTRIC SEMI TRUCK – ELECTREK
— *Walter Bloomberg (@DeItaone) February 10, 2026
This is a step up from the prices that were revealed back in 2017, but with inflation and other factors, it is no surprise Tesla could not come through on the numbers it planned to offer nine years ago. When the Semi was unveiled in November 2017, Tesla had three pricing levels:
- $150,000 for a 300-mile range version
- $180,000 for a 500-mile range version
- $200,000 for a limited “Founders Series” edition; full upfront payment required for priority production and limited to just 1,000 units
Tesla has not officially released any specific information regarding pricing on the Semi, but it is not surprising that it has not done so. The Semi is a vehicle that will be built for businesses, and pricing information is usually reserved for those who place reservations. This goes for most products of this nature.
The Semi will be built at a new, dedicated production facility in Sparks, Nevada, which Tesla broke ground on in 2024. The factory was nearly complete in late 2025, and executives confirmed that the first “online builds” were targeted for that same time.
Meaningful output is scheduled for this year, as Musk reiterated earlier this week that it would enter mass production this year. At full capacity, the factory will build 50,000 units annually.
News
Tesla executive moves on after 13 years: ‘It has been a privilege to serve’
“It is challenging to encapsulate 13 years in a single post. The journey at Tesla has been one of continuous evolution. From the technical intricacies of designing, building, and operating one of the world’s largest AI clusters to impactful contributions in IT, Security, Sales, and Service, it has been a privilege to serve,” Jegannathan said in the post.
Tesla executive Raj Jegannathan is moving on from the company after 13 years, he announced on LinkedIn on Monday.
“It is challenging to encapsulate 13 years in a single post. The journey at Tesla has been one of continuous evolution. From the technical intricacies of designing, building, and operating one of the world’s largest AI clusters to impactful contributions in IT, Security, Sales, and Service, it has been a privilege to serve,” Jegannathan said in the post.
After starting as a Senior Staff Engineer in Fremont back in November 2012, Jegannathan slowly worked his way through the ranks at Tesla. His most recent role was Vice President of IT/AI Infrastructure, Business Apps, and Infosec.
However, it was reported last year that Jegannathan had taken on a new role, which was running the North American sales team following the departure of Troy Jones, who had held the position previously.
While Jegannathan’s LinkedIn does not mention this position specifically, it seemed to be accurate, considering Tesla had not explicitly promoted any other person to the role.
It is a big loss for Tesla, but not a destructive departure. Jegannathan was one of the few company executives who answered customer and fan questions on X, a unique part of the Tesla ownership experience.
Tesla to offer Full Self-Driving gifting program: here’s how it will work
It currently remains unclear if Jegannathan was removed from the position or if he left under his own accord.
“As I move on, I do so with a full heart and excitement for what lies ahead. Thank you, Tesla, for this wonderful opportunity!” he concluded.
The departure marks a continuing trend of executives leaving the company, as the past 24 months have seen some significant turnover at the executive level.
Tesla has shown persistently elevated executive turnover over the past two years, as names like Drew Baglino, Rohan Patel, Rebecca Tinucci, Daniel Ho, Omead Afshar, Milan Kovac, and Siddhant Awasthi have all been notable names to exit the company in the past two years.
There are several things that could contribute to this. Many skeptics will point to Elon Musk’s politics, but that is not necessarily the case.
Tesla is a difficult, but rewarding place to work. It is a company that requires a lot of commitment, and those who are halfway in might not choose to stick around. Sacrificing things like time with family might not outweigh the demands of Tesla and Musk.
Additionally, many of these executives have made a considerable amount of money thanks to stock packages the company offers to employees. While many might be looking for new opportunities, some might be interested in an early retirement.
Tesla is also in the process of transitioning away from its most notable division, automotive. While it still plans to manufacture cars in the millions, it is turning more focus toward robotics and autonomy, and these plans might not align with what some executives might want for themselves. There are a wide variety of factors in the decision to leave a job, so it is important not to immediately jump to controversy.