News
SpaceX fires up Starship rocket twice in 30 hours ahead of next big tests
SpaceX has successfully fired up a full-scale Starship rocket for the second time in barely 30 hours and removed the ship’s Raptor engine to perform an additional suite of “cryo testing”.
Around 7pm CDT on May 6th, SpaceX technicians began loading the fourth full-scale Starship with liquid oxygen and methane, filling up a large portion of its massive propellant tanks. Just the latest in a line of several tests involving wet dress rehearsals (WDR) completed in the days prior, this test would soon become exceptional. About an hour and a half after work began, Starship SN4’s lone Raptor engine ignited and burned for ~3 seconds, marking the first time in history a next-generation SpaceX rocket truly came alive with one of the engines designed to take it all the way to orbit.
In line with tests performed with Starhopper – a low-fidelity, subscale tested that flew twice with Raptor – last year, it would have been business as usual if SpaceX had called it a day and moved on to something else with Starship SN4. Instead, Starship performed another WDR and fired up its Raptor engine for a second time in just 30 hours after SpaceX teams inspected the rocket and cleared it for another round. It’s unknown why two back-to-back static fires were performed but, to be clear, every step Starship SN4 takes forward is a step into uncharted territory. Already, the ship’s next steps could come as soon as Friday, May 8th.
According to CEO Elon Musk, SpaceX’s second Starship SN4 static fire test was completed successfully and actually marked the operational debut of a critical aspect of the next-generation launch vehicle and spacecraft. Known as header tanks, Starship needs two smaller secondary propellant tanks to complement its main tanks, a need driven mainly by the challenges of landing such a large and mobile spacecraft. Smaller header tanks will also make it dramatically easier for SpaceX to insulate cryogenic propellant and ensure it remains liquid over long-duration cruises in space, but safe and reliable landings are a more pressing concern for these early prototypes.
During landing operations, the main benefits smaller header tanks offer are relative ease of pressurization (needed to safely feed Raptor engines) and a much lower risk of issues from sloshing, which can introduce bubbles and voids that can obliterate rocket engines if ingested. Impressively, per Musk, Starship SN4 completed its second static fire test using its internal liquid methane header tank – a sort of bubble attached to the bottom of the main methane tank dome.


Starship’s liquid oxygen header tank is situated at the tip of the conical nose section, a part that all full-scale ships have been tested without thus far. However, the use of the fuel header tank on May 7th means that Starship SN4 already has a functional, plumbed header tank installed, verifying the partial functionality of a critical part of the next-generation launch vehicle. A second static fire will have also provided SpaceX a wealth of extra data about Raptor’s performance while installed on Starship, invaluable at such an early stage of integrated testing.
Two Starship static fires now under its belt, SpaceX removed SN4’s Raptor engine around 12 hours after its second test and returned it to storage at the company’s nearby factory facilities. According to public notices provided by Cameron County, Texas officials, SpaceX’s next Starship SN4 activity is expected to occur on May 8th with backup windows on the 9th and 10th and will involve “cryo testing”.


The most obvious conclusion is that SpaceX – having completed enough static fire testing to verify Starship SN4’s performance – now wants to really put the rocket through its paces with another cryogenic test. Completed on April 26th, the ship’s first cryogenic ‘proof’ test maxed out at around 4.9 bar (70 psi), enough for low-stress hop tests but well short of the sustained pressure needed for orbital spaceflight. While testing singular propellant tanks in the first few months of 2020, Musk revealed that SpaceX was targeting a minimum of 6 bar (~90 psi) for orbital Starship flights – ~8 bar (115 psi) with a 25% safety factor.

The company actually achieved 8.4 bar with one of its Starship test tanks, the same processes of which were used to build Starship SN4, but a full-scale ship has yet to demonstrate those pressures. Now, SpaceX already has a fifth full-scale prototype (Starship SN5) likely just a week or so away from pad readiness, meaning that Starship SN4’s potential destruction during pressure testing wouldn’t have a big impact on plans for a series of imminent flight tests. If SN4 survives pressure testing, it would likely have its Raptor engine reinstalled and move on to a 150m (500 ft) hop test.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.
Elon Musk
Elon Musk’s X goes down as users report major outage Friday morning
Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.
Elon Musk’s X experienced an outage Friday morning, leaving large numbers of users unable to access the social media platform.
Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.
Downdetector reports
Users attempting to open X were met with messages such as “Something went wrong. Try reloading,” often followed by an endless spinning icon that prevented access, according to a report from Variety. Downdetector data showed that reports of problems surged rapidly throughout the morning.
As of 10:52 a.m. ET, more than 100,000 users had reported issues with X. The data indicated that 56% of complaints were tied to the mobile app, while 33% were related to the website and roughly 10% cited server connection problems. The disruption appeared to begin around 10:10 a.m. ET, briefly eased around 10:35 a.m., and then returned minutes later.

Previous disruptions
Friday’s outage was not an isolated incident. X has experienced multiple high-profile service interruptions over the past two years. In November, tens of thousands of users reported widespread errors, including “Internal server error / Error code 500” messages. Cloudflare-related error messages were also reported.
In March 2025, the platform endured several brief outages spanning roughly 45 minutes, with more than 21,000 reports in the U.S. and 10,800 in the U.K., according to Downdetector. Earlier disruptions included an outage in August 2024 and impairments to key platform features in July 2023.