News
SpaceX sticks dramatic drone ship landing, third reuse flight a resounding success
SpaceX has once more accomplished what the launch industry long dismissed as infeasible, conducting their third commercial reuse of a recovered Falcon 9 booster. This particular mission was tasked with launching the 5,200 kg SES-11/Echostar 105 communications satellite into a geostationary transfer orbit. Once it makes its way into the final geostationary orbit, the satellite can be expected to provide communications services to North America in the form of digital television.
After the Falcon 9 booster separated from the second stage, it conducted a rapid 180 degree flip in order to orient itself towards the landing target, an autonomous spaceport drone ship (ASDS) stationed several hundred miles East of the Kennedy Space Center. The hypersonic booster then slowed itself down from roughly 5,000 mph with a series of two burns, culminating in the stage’s second recovery after an orbital-class launch. The booster, 1031, was previously tasked with launching the 10th cargo Dragon mission to the ISS, later landing at SpaceX’s land-based LZ-1 pad in February 2017.
- SpaceX recovered core 1031, which launched CRS-10, in February 2017. (SpaceX)
- Falcon 9 1031 lifts off for the second time from LC-39A. (Tom Cross/Teslarati)
This time around, 1031 got a taste of the ocean while landing aboard Of Course I Still Love You (OCISLY), despite sea conditions that were deemed relatively rough and stormy. It is unlikely that 1031 will ever launch again, as it is a Block 3 Falcon 9 and thus intended to only be reused once or twice. Nevertheless, this core will add to SpaceX’s ever-growing fleet of both operational and decommissioned Falcon 9 cores, most of which are stored in and around SpaceX’s Florida facilities.
This landing and recovery was quite possibly the most dramatic yet for SpaceX. While rapidly reentering into Earth’s thickening atmosphere, the stage experienced extraordinary heating that resulted in the aluminum grid fins nearly glowing white, and the same camera caught gorgeous interplay between ionizing gases coming off the stage and its final landing burn. For a solid minute thereafter, ground control lost the video feed from the first stage, seemingly foreshadowing the core’s untimely demise. However, cameras aboard OCISLY maintained their live coverage and revealed the stage’s successful landing aboard the drone ship soon after.
- Falcon 9 1031 on its way to OCISLY. (SpaceX)
- An incredible view of Falcon 9’s older aluminum grid finds glowing white-hot during reentry. (SpaceX)
- A gorgeous view of Earth’s curvature and orbital sunset. (SpaceX)
The second stage continued to orbit, coincidentally catching an incredible view of the sun setting behind Earth’s limb just before its first orbital insertion burn ended. After a coast period of some 20 minutes, the second stage reignited to boost the SES-11/EchoStar 105 satellite into its final transfer orbit, after which the satellite separated from the stage and continued on its way. The Falcon 9 second stage will eventually reenter Earth’s atmosphere and break apart before impacting the ocean, a process that may be expedited if the vehicle has enough residual fuel to hasten the orbital decay.
Put simply, SES-11/EchoStar 105 demonstrates SpaceX’s growing consistency and the resounding success they are having with the routinization of rapid launch cadence and commercially reusable rockets. The mission is the company’s 15th in 2017 alone, as well as the 12th successful recovery of a first stage this year and the 18th successful recovery total. More importantly, its launch was the third commercial reuse of a Falcon 9 first stage, paving the way for future reuses as the endeavor’s record of success continues without flaw.
- Another example of the intense reentry this Falcon 9 experience during its recovery. (SpaceX)
- 1031 seen just after landing aboard OCISLY. (SpaceX)
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.









