Connect with us

News

SpaceX eyes two Falcon 9 launches and a Starship hop in three days (Update: one day!)

All three of these SpaceX rockets could launch between August 29th and 31st. (Richard Angle; NASASpaceflight - bocachicagal)

Published

on

Update: In a surprise twist, SpaceX has confirmed plans to launch SAOCOM 1B, Starlink-11, and hop Starship SN6 in less than ten hours on August 30th.

Contingent upon a ULA Delta IV Heavy launch on August 29th, Starlink-11 is scheduled to lift off on a Falcon 9 rocket no earlier than (NET) 10:12 am EDT (UTC-4), followed by SAOCOM 1B on a separate Falcon 9 NET 7:18 pm EDT (UTC-4). Simultaneously, SpaceX is currently working towards a second full-scale Starship hop test between 8 am and 8 pm CDT (UTC-5) on Sunday, August 30th.

Pending an August 29th mission from competitor ULA, SpaceX aims to attempt two orbital Falcon 9 launches and a Starship hop test over the course of just a few days.

A United Launch Alliance (ULA) Delta IV Heavy rocket was originally scheduled to launch the secretive National Reconnaissance Office 44 (NROL-44) spy satellite on Wednesday before the customer requested a 24-hour delay and technical rocket bugs pushed the mission to no earlier than (NET) August 27th and now August 29th. Delta IV Heavy’s low cadence of one or two annual launches has traditionally made it hard for the rocket to launch on time, offering very few opportunities for the company to work the kinks out of the complex system.

Advertisement

ULA’s NROL-44 launch currently holds precedence over other missions scheduled around the same time, meaning that SpaceX has no choice but to delay its own launches every time the ULA mission slips. SpaceX has two launches currently in queue: Argentinian Earth observation satellite SAOCOM 1B was scheduled to launch NET 7:19 pm EDT (UTC-4) on August 28th, while SpaceX’s 11th Starlink v1.0 launch was expected to lift off NET 10:08 am EDIT (UTC-4) on August 30th. Simultaneously, a SpaceX Starship prototype is tracking towards its first short hop somewhere in between those orbital launches. ULA’s second NROL-44 delay has thrown both SpaceX launch dates somewhat up in the air, however.

SpaceX encapsulated SAOCOM 1B in Falcon 9’s payload fairing earlier this month. (CONAE)

Starship SN6 Flight 1

Recent delays to SpaceX’s East Coast launches have pushed the company’s second full-scale Starship hop test to the front of the line. Starship serial number 6 (SN6) is currently scheduled to attempt its first 150m (~500 ft) hop as early as Saturday, August 29th. Coming less than four weeks after Starship SN5 became the first full-scale prototype to successfully lift off (and land) on August 4th, a second successful hop – with an entirely different Raptor engine and Starship prototype – would be an extraordinary feat.

Meanwhile, SpaceX is simultaneously inspecting and repairing the hop-proven Starship SN5 prototype – most likely with the intention of flying the ship again in the near future. According to CEO Elon Musk, SpaceX’s current goal is to perform “several” fast-paced Starship hop tests to streamline the new rocket’s launch operations. The August 29th window for SN6’s 150m hop lasts from 8am to 8pm and the rocket could attempt to lift off as early as 10am to noon.

Starship SN6 completed a cryo proof test and Raptor static fire on August 16th and August 23rd. (LabPadre)

SAOCOM 1B

Sister to the SAOCOM 1A satellite SpaceX launched from California in October 2018, SAOCOM 1B is more or less identical. Notably, however, it will launch from Florida – the first polar launch planned from the US East Coast in half a century. The reason the United States effectively retired the Eastern polar launch corridor is a bizarre story of Cold War tensions gone awry but the gist is that SpaceX’s Falcon 9 rocket will ‘dogleg’ midflight, changing its trajectory to avoid overflying populated regions.

Originally scheduled to launch as early as March 30th, the Argentinian satellite has been relentlessly delayed by coronavirus-related restrictions and technical delays. SAOCOM 1B’s Falcon 9 booster was even swapped amidst the delays, switching from B1051 to B1059 as SpaceX strove to fill the gap in its manifest with internal Starlink missions. Now, NROL-44’s technical launch delays have pushed the Falcon 9 mission from August 27th to NET 7:19 pm EDT (UTC-4) on Sunday, August 30th.

SAOCOM 1B will be SpaceX’s first return-to-launch-site (RTLS) booster landing since March 2020.

Advertisement
Falcon 9 B1059 – now scheduled to launch SAOCOM 1B – last returned to port on June 16th after launching Starlink-8. (Richard Angle)

Starlink-11

Finally, prior to NROL-44’s 72-hour slip, SpaceX’s 11th Starlink v1.0 mission and 12th Starlink launch overall was scheduled NET Sunday, August 30th. ULA’s delays have added considerable uncertainty, at one point pushing Starlink-11 to a tentative September 1st NET before the launch date (rather oddly) slipped back into late-August. Assuming SpaceX still has to wait for ULA, the most likely alternative is August 31st, given that August 30th would necessitate two launches in less than ten hours.

SpaceX completed its first operational US military Falcon 9 launch with booster B1060 on June 30th. (Richard Angle)
B1060 completed its first recovery on July 4th. (Richard Angle)

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading