Connect with us
Tesla's Autopilot was not engaged in a crash with a train; driver unharmed Tesla's Autopilot was not engaged in a crash with a train; driver unharmed

News

Tesla argues human error caused fatal 2019 crash, not Autopilot: report

Credit: Jeremy from Sydney, Australia, CC BY 2.0 , via Wikimedia Commons

Published

on

Tesla now faces the jury’s verdict in a trial alleging that Autopilot caused a fatality, and the trial is expected to set a precedent for future cases surrounding advanced driver assistance systems (ADAS). During closing arguments on Tuesday, an attorney for the plaintiffs pointed to an analysis Tesla conducted two years before the accident, claiming that the automaker knowingly sold the Model 3 with a safety issue related to its steering.

The trial began in California late last month after a 2019 incident in which 37-year-old Micah Lee veered off a highway outside Los Angeles at 65 miles per hour, suddenly striking a palm tree before the vehicle burst into flames. According to court documents, the crash killed Lee and injured both of his passengers, one of whom was an 8-year-old boy.

Lee’s passengers and estate initiated a civil lawsuit against Tesla, alleging that the company knew that Autopilot and its other safety systems were defective when it sold the Model 3.

Tesla has denied any liability in the accident, claiming that Lee had consumed alcohol before getting behind the wheel and saying it could not detect if Autopilot was engaged at the time of the crash.

Advertisement

This and other trials come as regulatory requirements for ADAS suites are just emerging, and the cases are expected to help navigate future court cases related to accidents with the systems.

According to Reuters, the attorney for the plaintiffs, Jonathan Michaels, showed the jury an internal safety analysis from Tesla in 2017 during closing arguments, in which employees identified “incorrect steering command” as a potential safety issue. Michaels said the issue involved an “excessive” steering wheel angle, arguing that Tesla was aware of related safety problems before selling the Model 3.

“They predicted this was going to happen. They knew about it. They named it,” Michaels said.

Michaels also said that Tesla created a specific protocol to deal with affected customers and that the company instructed workers to avoid accepting liability for the issue. Michaels also echoed prior arguments, saying that Tesla knew it was releasing Autopilot in an experimental state, though it needed to do so to boost market share.

Advertisement

“They had no regard for the loss of life,” Michaels added.

Michael Carey, Tesla’s attorney, said that the 2017 analysis wasn’t meant to identify the defect but instead was meant to help avoid any potential safety issues that could theoretically occur. Carey also said that Tesla developed a system to prevent Autopilot from making the same turn that had caused the crash.

Carey said that the subsequent development of the safety system “is a brick wall standing in the way of plaintiffs’ claim,” adding that there haven’t been any other cases where a Tesla has maneuvered the way that Lee’s did.

Instead, Carey argued to the jury that the crash’s simplest explanation was human error, asking jurors to avoid awarding damages on behalf of the severe injuries encountered by the victims.

Advertisement

“Empathy is a real thing, we’re not saying its not,” Carey argued. “But it does not make cars defective.”

Earlier this month, a federal judge in California ruled in Tesla’s favor in a similar case looking at whether the automaker misled consumers about its Autopilot system’s capabilities. In that case, which had the chance to become a class-action lawsuit, the judge ruled that most of the involved plaintiffs had signed an arbitration clause when purchasing the vehicle, requiring the claims to be settled outside of court.

The cases are expected to set precedents in court for future trials involving Tesla’s Autopilot and Full Self-Driving (FSD) beta systems and the degree of the automaker’s responsibility in accidents related to their engagement. Tesla is also facing additional information requests from the U.S. Department of Justice related to its Autopilot and FSD beta.

Tesla has received more requests regarding Autopilot and FSD from DOJ

Advertisement

What are your thoughts? Let me know at zach@teslarati.com, find me on X at @zacharyvisconti, or send your tips to us at tips@teslarati.com.

Zach is a renewable energy reporter who has been covering electric vehicles since 2020. He grew up in Fremont, California, and he currently lives in Colorado. His work has appeared in the Chicago Tribune, KRON4 San Francisco, FOX31 Denver, InsideEVs, CleanTechnica, and many other publications. When he isn't covering Tesla or other EV companies, you can find him writing and performing music, drinking a good cup of coffee, or hanging out with his cats, Banks and Freddie. Reach out at zach@teslarati.com, find him on X at @zacharyvisconti, or send us tips at tips@teslarati.com.

Advertisement
Comments

News

Tesla already has a complete Robotaxi model, and it doesn’t depend on passenger count

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Published

on

Credit: @AdanGuajardo/X

Tesla already has the pieces in place for a full Robotaxi service that works regardless of passenger count, even if the backbone of the program is a small autonomous two-seater. 

That scenario was discussed during the company’s Q4 and FY 2025 earnings call, when executives explained why the majority of Robotaxi rides will only involve one or two people.

Two-seat Cybercabs make perfect sense

During the Q&A portion of the call, Tesla Vice President of Vehicle Engineering Lars Moravy pointed out that more than 90% of vehicle miles traveled today involve two or fewer passengers. This, the executive noted, directly informed the design of the Cybercab. 

“Autonomy and Cybercab are going to change the global market size and mix quite significantly. I think that’s quite obvious. General transportation is going to be better served by autonomy as it will be safer and cheaper. Over 90% of vehicle miles traveled are with two or fewer passengers now. This is why we designed Cybercab that way,” Moravy said. 

Advertisement

Elon Musk expanded on the point, emphasizing that there is no fallback for Tesla’s bet on the Cybercab’s autonomous design. He reiterated that the autonomous two seater’s production is expected to start in April and noted that, over time, Tesla expects to produce far more Cybercabs than all of its other vehicles combined.

“Just to add to what Lars said there. The point that Lars made, which is that 90% of miles driven are with one or two passengers or one or two occupants, essentially, is a very important one… So this is clearly, there’s no fallback mechanism here. It’s like this car either drives itself or it does not drive… We would expect over time to make far more CyberCabs than all of our other vehicles combined. Given that 90% of distance driven or distance being distance traveled exactly, no longer driving, is one or two people,” Musk said. 

Tesla’s robotaxi lineup is already here

The more interesting takeaway from the Q4 and FY 2025 earnings call is the fact that Tesla does not need the Cybercab to serve every possible passenger scenario, simply because the company already has a functional Robotaxi model that scales by vehicle type.

The Cybercab will handle the bulk of the Robotaxi network’s trips, but for groups that need three or four seats, the Model Y fills that role. For higher-end or larger-family use cases, the extended-wheelbase Model Y L could cover five or six occupants, provided that Elon Musk greenlights the vehicle for North America. And for even larger groups or commercial transport, Tesla has already unveiled the Robovan, which could seat over ten people.

Advertisement

Rather than forcing one vehicle to satisfy every use case, Tesla’s approach mirrors how transportation works today. Different vehicles will be used for different needs, while unifying everything under a single autonomous software and fleet platform.

Continue Reading

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading