Tesla has revealed details surrounding the Cybertruck windshield in a patent that was obtained by the automaker just a few days ago.
Tesla obtained a patent for “Automotive Glass Structure having feature lines and related methods of manufacture” on January 19. The company describes the glass in the patent:
“Automotive glass structures having curves and feature lines and methods for forming the same are provided. An example method includes applying localized heat (e.g., via a laser, heating element) to a location of a substantially planar glass structure and bending the glass structure at that location (e.g., along a line of the planar glass structure) to form a feature line in the glass structure. The bending can be formed to have a radius of curvature of between 2 mm and 5 cm. Additional layers of curved or joined glass layers may further be included to form a curved multi-layer glass structure for automotive use.”
Initially spotted by Electrek, Tesla states in the patent that the glass could be utilized by “a car, a truck, a semi-truck, and so on.” However, the patent specifically shows illustrations of the Cybertruck and its interior:
- Credit: USPTO | Tesla
- Credit: USPTO | Tesla
When the Cybertruck was unveiled in November 2019, the company stated it would have a special type of Armor Glass that would be difficult to break or penetrate, which is only one of the many features of the Cybertruck that promotes longevity and rugged durability.
In past reports, we have shown Tesla’s plans for high-durability glass through a ‘multi-layer glass stack’ with a roughly 10 percent chance of failure. This design measured between .5 and 1.1 millimeters thick and has an adhesive interlayer. It also included a “non-soda lime, low-CTE, high densification glass” that measures between 2 and 5 millimeters thick” on the outer layer of the glass, which increases durability.
Credit: Tesla
This patent discusses explicit “feature lines,” meaning glass must be able to form structures with “aggressive curves or folds.” This would describe the Cybertruck’s abrupt and sharp changes in its exoskeleton, which are completely untraditional compared to the pickup trucks currently available. Tesla said in the detailed description:
“For example, a faceted windshield with aggressive feature lines may be formed. Without being constrained by way of example, a glass structure may have a feature line with an example radius of curvature of between 2 mm and 5 cm. Thus, glass structures may be formed in shapes and configurations which were previously unavailable through conventional bending methods.”
Tesla claims the glass can be bent through heat. It could also involve conjoining two pieces of glass through welding or an adhesive like polymer.

Credit: USPTO | Tesla
Tesla filed related patents in China, Korea, Europe, and Japan.
With the Cybertruck set to enter production soon, the automaker is continuing to move forward with the vehicle’s development. Production equipment has been spotted on numerous occasions both near and inside the walls of Gigafactory Texas.
I’d love to hear from you! If you have any comments, concerns, or questions, please email me at joey@teslarati.com. You can also reach me on Twitter @KlenderJoey, or if you have news tips, you can email us at tips@teslarati.com.
Elon Musk
SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report
The update was reportedly shared to Reuters by people familiar with the matter.
SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone.
The update was reportedly shared to Reuters by people familiar with the matter.
A possible Starlink Phone
As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.
SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.
Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.”
Starlink and SpaceX’s revenue
Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.
SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.
Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”
Elon Musk
FCC accepts SpaceX filing for 1 million orbital data center plan
The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process.
The Federal Communications Commission (FCC) has accepted SpaceX’s filing for a new non-geostationary orbit (NGSO) satellite system of up to one million spacecraft and has opened the proposal for public comment.
The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process, marking the first regulatory step for the ambitious space-based computing network.
FCC opens SpaceX’s proposal for comment
In a public notice, the FCC’s Space Bureau stated that it is accepting SpaceX’s application to deploy a new non-geostationary satellite system known as the “SpaceX Orbital Data Center system.” As per the filing, the system would consist of “up to one million satellites” operating at altitudes between 500 and 2,000 kilometers, using optical inter-satellite links for data transmission.
The FCC notice described the proposal as a long-term effort. SpaceX wrote that the system would represent the “first step towards becoming a Kardashev II-level civilization – one that can harness the Sun’s full power.” The satellites would rely heavily on high-bandwidth optical links and conduct telemetry, tracking, and command operations, with traffic routed through space-based laser networks before being sent to authorized ground stations.
FCC Chairman Brendan Carr highlighted the filing in a post on X, noting that the Commission is now seeking public comment on SpaceX’s proposal. Interested parties have until early March to submit comments.
What SpaceX is proposing to build
As per the FCC’s release, SpaceX’s orbital data center system would operate alongside its existing and planned Starlink constellations. The FCC notice noted that the proposed satellites may connect not only with others in the new system, but also with satellites in SpaceX’s first- and second-generation Starlink networks.
The filing also outlined several waiver requests, including exemptions from certain NGSO milestone and surety bond requirements, as well as flexibility in how orbital planes and communication beams are disclosed, as noted in a Benzinga report. SpaceX noted that these waivers are necessary to support the scale and architecture of the proposed system.
As noted in coverage of the filing, the proposal does not represent an immediate deployment plan, but rather a framework for future space-based computing infrastructure. SpaceX has discussed the idea of moving energy-intensive computing, such as AI workloads, into orbit, where continuous solar power and large physical scale could reduce constraints faced on Earth.
Elon Musk
Elon Musk’s Boring Company signs deal to begin Dubai Loop project
The project marks the Boring Company’s first tunneling project outside the United States.
Elon Musk’s Boring Company has signed a definitive agreement with Dubai’s Roads and Transport Authority to begin implementing the Dubai Loop.
The project marks the Boring Company’s first tunneling project outside the United States.
The Boring Company signs Dubai Loop agreement
The Boring Company signed a partnership agreement with Dubai Roads and Transport Authority on the sidelines of the World Governments Summit 2026 to start the implementation of the Dubai Loop, as per the tunneling startup in a blog post.
The agreement was signed on behalf of Dubai RTA by Mattar Al Tayer, director general and chairman of the Board of Executive Directors, and on behalf of The Boring Company by James Fitzgerald, the startup’s global vice president of business development. Senior officials from both organizations were present at the signing ceremony.
The Dubai Loop project is intended to improve passenger mobility in high-density urban areas through underground vehicle tunnels designed for faster construction and lower surface disruption than conventional transport systems.
Pilot route and project scope outlined
The first phase of the Dubai Loop will consist of a 4-mile (6.4 km) pilot route with four stations linking the Dubai International Financial Centre and Dubai Mall. The pilot phase is expected to pave the way for a full network extending up to 14 miles (22.5 km) with 19 stations connecting the Dubai World Trade Centre, the financial district, and Business Bay.
The tunnels will have a diameter of 12 feet (3.6 meters) and will be dedicated to vehicle transport. Construction will rely on tunneling methods designed to reduce costs and minimize disruption to existing infrastructure.
The pilot phase is estimated to cost about $154 million, with delivery expected roughly one year after design work and preparatory activities are completed. The full Dubai Loop network is projected to cost approximately $545 million and would take around three years to implement.
Capacity targets and next steps
Mattar Al Tayer shared his excitement about the project, stating that the Loop system will be a qualitative addition to the city’s transportation system. “The project represents a qualitative addition to Dubai’s transport ecosystem, as it enhances integration between different mobility modes and provides flexible and efficient first- and last-mile solutions.
“Studies have demonstrated the project’s efficiency in terms of capacity and operating costs, with the pilot route expected to serve around 13,000 passengers per day, while the full route is projected to have a total capacity of approximately 30,000 passengers per day,” he said.
Steve Davis, president of The Boring Company, highlighted that the partnership aims to deliver safe and efficient tunneling solutions aligned with Dubai’s long-term mobility strategy.
“We are proud to partner with the Roads and Transport Authority, one of the world’s leading entities in adopting innovative solutions in the transport sector. Through this partnership, we look forward to delivering advanced, safe, and highly efficient tunnelling solutions that support Dubai’s vision for sustainable and future mobility,” Davis stated.

