Connect with us

SpaceX

SpaceX’s first Starship engine suffers “expected” damage during Raptor test fire

Sometimes you have to crack a few Raptor eggs to make a Starship omelette. (SpaceX)

Published

on

SpaceX CEO Elon Musk says that the first full-scale Starship engine to be tested has already been pushed to the point of damage less than three weeks after the campaign began, setting the stage for the second full-scale Raptor to take over in the near future.

According to Musk, while most of the damaged pathfinder Raptor’s components should still be easily reusable, the assembly of the second finalized engine is “almost done” and that Raptor will take over near-term testing rather than waiting for repairs to the first engine. This is undoubtedly an extraordinarily aggressive test program, particularly for such a new and cutting-edge rocket propulsion system, but these latest developments are ultimately far more encouraging than they are concerning.

Although the Raptor engine family began integrated subscale static fires way back in September 2016, SpaceX’s propulsion team finalized Raptor’s baseline design and completed assembly, shipment, and an integrated static fire of the first full-scale engine on February 3rd, considerably less than three weeks before Musk took to Twitter. Aside from confirming that the new Raptor had been damaged during its most recent static fire several days prior, Musk indicated that the failure (unsurprisingly) was primarily attributed to the engine reaching the highest chamber pressures yet.

Advertisement

Raptor’s main combustion chamber (the bit directly above the nozzle) has been designed to nominally operate at and reliably withstand extraordinary pressures of 250+ bar (3600+ psi), performance that demands even higher pressures in the components that feed hot methane and oxygen gas into Raptor’s combustion chamber. One prime example hinted at by Musk in a 2018 tweet is its oxygen preburner, used to convert liquid propellant into a high-velocity gas that can then feed a dedicated oxygen turbopump. Aside from the absurdly corrosive environment created by extremely hot gaseous oxygen, the preburner must also survive pressures that could peak as high as 800+ bar, or 12,000 psi.

 

A lack of technical detail means that it’s hard to know what thrust or main chamber pressure Musk had in mind when referring to exotic alloys that would be needed to survive those pressures, but the performance statistics of a Raptor with a preburner operating at 800+ bar would probably outstrip anything Musk has thus far described. In other words, it’s safe to assume that Raptor has probably not been pushed to those performance levels just yet, although it’s still a distant possibility. More likely is that 800+ bar in the oxygen preburner is an extreme stretch-goal that will take concerted research, development, and optimization to achieve, with Raptor having suffered damage somewhere below those levels while still reaching eye-watering performance figures.

Advertisement

For an engine as complex as Raptor, there are countless dozens of potential failure modes the appearance of which would come as little surprise for an engine just days into full-scale testing. Above all else, the Raptor test schedule held by SpaceX’s world-class propulsion team – be it self-motivated or driven by reckless management-by-spreadsheet – has been fast-paced in the extreme, taking the first high-performance Raptor ever built from standstill to more than 90% thrust and chamber pressures of almost 270 bar (3900 psi) in – quite literally – less than one week. In the same period of time, more than half a dozen static fire tests (ranging from 1-10 seconds) were performed.

Within a few days of that February 10th milestone, in which Raptor reached chamber pressures comparable with the most advanced modern engines (namely RD-180/190/191), the engine was apparently pushed dramatically higher still, reaching a chamber pressure (and thus thrust) that wrought damage on some of the more sensitive parts of the engine’s plumbing. Despite the fact that the second production Raptor is apparently already “almost done”, Musk suggested that it would already feature changes (of unknown gravity) to mitigate the failure modes experienced by Raptor SN01.

In an industry where NASA and contractors like Aerojet-Rocketdyne will spend months between static fire tests of Space Shuttle engines that have each literally flown multiple (if not) dozens of missions to orbit and have a demonstrated performance and reliability record that is measured in the hundreds of thousands of seconds, the speed and agility of SpaceX’s Raptor development and test program is breathtaking. What remains to be seen is just how comparably reliable and successful the end results (i.e. operational Raptor) will be, but an attitude that actively accepts and even pursues testing to destruction can ultimately only serve to benefit the finished product at the cost of destroyed hardware and many on-ground lessons learned the hard ways.

Advertisement

Given the immense success of SpaceX’s Merlin family of engines and the aggressive strategy of development and continuous improvement that brought it from Merlin 1A to 1D and MVacD, SpaceX is clearly not fumbling around in the dark when it comes to Raptor R&D.


Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes!

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Flight 10: What to expect

SpaceX implemented hardware and operational changes aimed at improving Starship’s reliability.

Published

on

Credit: SpaceX

SpaceX is preparing to launch the tenth test flight of its Starship vehicle as early as Sunday, August 24, with the launch window opening at 6:30 p.m. CT. 

The mission follows investigations into anomalies from earlier flights, including the loss of Starship on its ninth test and a Ship 36 static fire issue. SpaceX has since implemented hardware and operational changes aimed at improving Starship’s reliability.

Booster landing burns and flight experiments

The upcoming Starship Flight 10 will expand Super Heavy’s flight envelope with multiple landing burn trials. Following stage separation, the booster will attempt a controlled flip and boostback burn before heading to an offshore splashdown in the Gulf of America. One of the three center engines typically used for landing will be intentionally disabled, allowing engineers to evaluate whether a backup engine can complete the maneuver, according to a post from SpaceX.

The booster will also transition to a two-engine configuration for the final phase, hovering briefly above the water before shutdown and drop. These experiments are designed to simulate off-nominal scenarios and generate real-world data on performance under varying conditions, while maximizing propellant use during ascent to enable heavier payloads.

Starship upper stage reentry tests

The Starship upper stage will attempt multiple in-space objectives, including deployment of eight Starlink simulators and a planned Raptor engine relight. SpaceX will also continue testing reentry systems with several modifications. A section of thermal protection tiles has been removed to expose vulnerable areas, while new metallic tile designs, including one with active cooling, will be trialed.

Advertisement

Catch fittings have been installed to evaluate their thermal and structural performance, and adjustments to the tile line will address hot spots observed on Flight 6. The reentry profile is expected to push the structural limits of Starship’s rear flaps at maximum entry pressure.

SpaceX says lessons from these tests are critical to refining the next-generation Starship and Super Heavy vehicles. With Starfactory production ramping in Texas and new launch infrastructure under development in Florida, the company is pushing to hit its goal of achieving a fully reusable orbital launch system.

Continue Reading

News

FAA clears SpaceX for Starship Flight 10 after probe into Flight 9 mishap

SpaceX will attempt a Gulf splashdown for Flight 10 once more instead of a tower capture.

Published

on

Credit: SpaceX

The Federal Aviation Administration has closed its review of SpaceX’s Starship Flight 9 mishap, clearing the way for the next launch attempt as soon as August 24. 

Flight 9 ended with the loss of both the Super Heavy booster and the upper stage, but regulators accepted SpaceX’s findings that a fuel component failure was the root cause. No public safety concerns were reported from the incident.

Starship recovery lessons

SpaceX noted that Flight 9 marked the first reuse of a Super Heavy booster. Unlike prior attempts, the company did not try a tower “chopsticks” recovery, opting instead for an offshore return that ended in a destructive breakup. The upper stage was also lost over the Indian Ocean. 

As per the FAA in its statement, “There are no reports of public injury or damage to public property. The FAA oversaw and accepted the findings of the SpaceX-led investigation. The final mishap report cites the probable root cause for the loss of the Starship vehicle as a failure of a fuel component. SpaceX identified corrective actions to prevent a reoccurrence of the event.”

SpaceX also highlighted that Flight 9’s debris did not harm any wildlife. “SpaceX works with an experienced global response provider to retrieve any debris that may wash up in South Texas and/or Mexico as a result of Starship flight test operations. During the survey of the expected debris field from the booster, there was no evidence of any floating or deceased marine life that would signal booster debris impact harmed animals in the vicinity,” the private space company noted.

Advertisement

Expanding test objectives

To mitigate risks, SpaceX plans to adjust return angles for future flights and conduct additional landing burn tests on Flight 10. SpaceX will attempt a Gulf splashdown for Flight 10 once more, instead of a tower capture, according to a report from the Boston Herald.

The upcoming Starship Flight 10, which will be launching from Starbase in Texas, will also mark SpaceX’s attempt to perform its first payload deployment and an in-space Raptor relight. Despite recent setbacks, which include the last three flights ending with the upper stage experiencing a rapid unscheduled disassembly (RUD), Starship remains central to NASA’s Artemis program, with a variant tapped as the human landing system for Artemis III, the first since the Apollo program. 

Standing more than 400 feet tall and generating 16 million pounds of thrust, Starship remains the most powerful rocket flown, though it has yet to complete an orbital mission. The FAA has expanded SpaceX’s license to allow up to 25 Starship flights annually from Texas.

Continue Reading

News

Ukraine completes first Starlink direct-to-cell test in Eastern Europe

The trial was announced by the Ministry of Digital Transformation and Kyivstar’s parent company Veon, in a press release.

Published

on

Credit: SpaceX

Ukraine’s largest mobile operator, Kyivstar, has completed its first test of Starlink’s Direct to Cell satellite technology, enabling text messages to be sent directly from 4G smartphones without extra hardware. 

The trial was announced by the Ministry of Digital Transformation and Kyivstar’s parent company Veon in a press release.

First Eastern Europe field test

The Zhytomyr region hosted the pilot, where Deputy Prime Minister Mykhailo Fedorov and Kyivstar CEO Oleksandr Komarov exchanged texts and even made a brief video call via Starlink’s satellite link in northern Ukraine’s Zhytomyr region. 

Veon stated that the test marked Eastern Europe’s first field trial of the technology, which will allow Kyivstar’s 23 million subscribers to stay connected in areas without cellular coverage. The service will debut in fall 2025 with free text messaging during its testing phase.

“Our partnership with Starlink integrates terrestrial networks with satellite platforms, ensuring that nothing stands between our customers and connectivity – not power outages, deserts, mountains, floods, earthquakes, or even landmines,” Veon CEO Kaan Terzioglu stated.

Advertisement

Starlink in Ukraine

Kyivstar signed its Direct to Cell agreement with Starlink in December 2024, about a year after a major cyberattack disrupted service and caused nearly $100 million in damages, as noted in a report from the Kyiv Independent. Starlink technology has been a pivotal part of Ukraine’s defense against Russia in the ongoing conflict.

“Despite all the challenges of wartime, we continue to develop innovative solutions, because reliable communication under any circumstances and in any location is one of our key priorities. Therefore, this Kyivstar project is an example of effective partnership between the state, business, and technology companies, which opens the way to the future of communication without borders,” Mykhailo Fedorov, First Deputy Prime Minister of Ukraine, said.

Continue Reading

Trending