

SpaceX
SpaceX’s Starship hopper steps towards first hop with several cautious tests
SpaceX’s team of South Texas engineers and technicians have dived into a program of critical pre-hop tests of the first assembled Starship prototype, a partial-fidelity vehicle – known as (Star)Hopper – meant to soon perform low-altitude, low-velocity hop tests powered by Raptor.
Despite a lack of official information is known and SpaceX’s general silence – even to local residents – about Starhopper’s testing, some barebones insight can be derived from what has and hasn’t been done or seen over the past seven days of testing, as well as five apparent wet dress rehearsals (WDRs). To verify the operational integrity of Starhopper and iron out best practices for what is effectively a one-off mobile test stand for Raptor, these WDRs (and one more active test) have seen the unusual prototype filled with some amount of liquid oxygen and methane propellant, taken to flight (hop?) pressures, and generally monitored closely to gather valuable telemetry and judge Starhopper’s condition and hop-readiness. Aside from Hopper, these tests also serve as a shakedown for complex pad and support facilities sprung up from a dirt pile in barely three months.
Fueling the beast
Starhopper’s five (ish) wet dress rehearsal tests have demonstrated an intriguing level of caution relative to the last few months of BFR program development. Depending on how much propellant SpaceX has been filled the vehicle with and how much of that propellant they are able to recycle after each attempt, each dress rehearsal could cost upwards of six figures (USD), while also putting the unusual steel structure through multiple stress cycles.
No official info has been provided beyond a brief indication that SpaceX means to static-fire Starhopper before transitioning to tethered hops, meaning that it’s quite difficult to determine what exactly the testing plan and schedule are. In other words, these ~5 WDR tests could have been the plan all along, or each test could be producing data that has lead launch engineers to scrub Raptor ignition attempts nominally planned at the end of each rehearsal. For an entirely new and unfamiliar design like Starhopper, it seems likely that at least one or two WDRs were planned before any attempt to static fire the hopper’s lone Raptor, although it could also be the case that – much like most SpaceX static fire attempts – the WDR was simply built in as a precursor to ignition, barring off-nominal telemetry.
The third and most visibly active test yet (above) occurred on March 25th and saw Starhopper briefly vent a cloud of gas from Raptor, with some viewers guessing that a Raptor preburner (partial ignition) test had been observed. It’s unclear whether this Raptor (SN02, the second produced) completed acceptance testing in McGregor, Texas on the way from California to Boca Chica. If not, then the caution on display in these WDR tests (i.e. no visible Raptor ignitions) could also be a side-effect of
The fidelity of Starhopper relative to its orbit-facing successors is also unclear. If the prototype’s structures, avionics, and plumbing are actually more indicative of the finished product than they appear, it’s possible that SpaceX tendency towards accepting the destruction of test hardware is in a bit more of a cautious state than usual, with a total loss of vehicle amounting to a significant technical setback and schedule delay. Based on the vehicle’s appearance and the apparent decision to entirely set aside the idea of installing a new fairing on Starhopper, it seems far more plausible that the prototype is more of a glorified mobile test stand for Raptor engines and Starship avionics (software) than anything else.
If Starhopper really can’t function as something more than a marginally mobile test stand for Raptor(s), then the value of actually hopping the craft could be quite minimal, perhaps offering useful data on Raptor’s control loop and behavior during flight operations. Still, CEO Elon Musk has stated several times that SpaceX has gotten good enough at the actual task of landing rockets vertically that it’s effectively a known quantity for Raptor and BFR, whereas the exotic atmospheric operations planned for Starship are the main uncertainty for successful recoveries.
Simultaneously, SpaceX is building the first orbital-class Starship prototype just a few thousand feet away from Starhopper’s new roost, utilizing stainless steel sheets almost three times thinner than the quarter-inch-thick steel the first prototype was built out of. It’s likely that Starhopper’s career will thus end up being rather short, given that the completion of the first near-final Starship would further minimize the low-fidelity hopper’s utility. If it’s actually meant to reach orbit, the newest Starship prototype will require the tripod fins and canard wings shown in SpaceX’s latest renders in order to safely land for future test flights, while Starhopper appears to be far too heavy and simplistic to warrant the expensive and time-consuming task of outfitting it with aerodynamic control surfaces and a new nose cone capable of surviving the associated forces.
While additional testing may be done on Friday, March 29th, it appears that the next attempts for the first static fire (and hop tests) will begin next week (likely Monday) – SpaceX is unlikely to test on weekends due to the potential disruption it could cause for beach-going locals.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
SpaceX set to launch Axiom’s mission for diabetes research on the ISS
Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.
Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).
The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.
Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.
“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.
Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.
The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.
Elon Musk
EU considers SES to augment Starlink services
The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.
In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.
Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.
“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.
SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.
“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.
Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.
“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.
SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.
News
Amazon launches Kuiper satellites; Can it rival Starlink?
With 27 satellites in orbit, Amazon kicks off its $10B plan to deliver global broadband. Can Bezos’ Kuiper take on Musk’s Starlink?

Amazon’s Project Kuiper launched its first 27 satellites on Monday, marking the start of a $10 billion effort that could compete with SpaceX’s Starlink with a global broadband internet network.
Amazon’s Kuiper satellites launched aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Florida. Project Kuiper’s recent launch is the initial step toward deploying Amazon’s 3,236 satellites for low-Earth orbit connectivity. Amazon’s satellite launch was initially set for April 9 but was delayed due to bad weather.
Now that the Kuiper satellites have been launched, Amazon is expected to publicly confirm contact with the satellites from its mission operations center in Redmond, Washington. The company aims to start offering Kuiper services to customers later this year. Project Kuiper was unveiled in 2019 and targets consumers, businesses, and governments who need reliable internet service, similar to Starlink.
Amazon has a deadline from the U.S. Federal Communications Commission to deploy 1,618 satellites by mid-2026. Analysts suggest the company may require an extension to its Kuiper satellite deployment deadline due to the project’s year-long delay from its planned 2024 start.
United Launch Alliance could conduct up to five more Kuiper missions this year, according to ULA CEO Tory Bruno. Amazon noted in a 2020 FCC filing that Kuiper services could begin with 578 satellites, initially covering northern and southern regions.
Kuiper’s launch pits Amazon against SpaceX’s Starlink and telecom giants like AT&T and T-Mobile, with a focus on underserved rural areas.
“There’s an insatiable demand for the internet,” Amazon Executive Chairman Jeff Bezos told Reuters in January. “There’s room for lots of winners there. I predict Starlink will continue to be successful, and I predict Kuiper will be successful as well.”
Global interest in satellite alternatives is rising. Ukraine is exploring Starlink alternatives with the European Union (EU), driven by concerns over Elon Musk. Germany’s military, Bundeswehr, also plans its own constellation to ensure independent communications. However, like Amazon’s Kuiper Project, EU options lag behind Starlink.
Amazon’s consumer expertise and cloud computing infrastructure give Kuiper a competitive edge despite Starlink’s market lead. As Kuiper ramps up launches, its success could reshape broadband access while challenging SpaceX’s dominance in the satellite internet race.
-
News1 week ago
Tesla’s Hollywood Diner is finally getting close to opening
-
Elon Musk2 weeks ago
Tesla doubles down on Robotaxi launch date, putting a big bet on its timeline
-
News6 days ago
Tesla is trying to make a statement with its Q2 delivery numbers
-
Investor's Corner1 week ago
LIVE BLOG: Tesla (TSLA) Q1 2025 Company Update and earnings call
-
SpaceX2 weeks ago
SpaceX pitches subscription model for Trump’s Golden Dome
-
News4 days ago
NY Democrats are taking aim at Tesla direct sales licenses in New York
-
Elon Musk2 weeks ago
Tesla Full Self-Driving gets full unhinged review from Joe Rogan
-
News2 weeks ago
Swedish unions upset after Tesla opens two new Superchargers