

News
Elon Musk’s SpaceX AMA: Living on Mars, Spaceship Info, Timeline
SpaceX CEO Elon Musk hosted a Reddit AMA (Ask Me Anything) earlier this afternoon and spent several hours drinking whiskey, trolling the audience, answering some great questions, and generally having a blast. He revealed a vast array of fascinating new details about SpaceX’s giant new rocket (BFR), its upper stage spaceship (BFS), and much more.
All of Musk’s answers from the AMA have been collated and organized by category below. You’ll want to shy away from the AMA page itself, currently clocking in at more 10,000 comments.
When useful, particularly dense and technical responses have been summarized in italics for a broader audience.
Living on Mars
Q: Obviously there will be an extreme amount of care put into what is sent on the first missions, and the obvious answer of “Solar Panels” and “Fuel Production Equipment” is included, but what else?
A (Elon): Our goal is get you there and ensure the basic infrastructure for propellant production and survival is in place. A rough analogy is that we are trying to build the equivalent of the transcontinental railway. A vast amount of industry will need to be built on Mars by many other companies and millions of people.
Q: Does your Mars city feature permanently anchored BFS spaceships?
A (Elon): Wouldn’t read too much into that illustration
Q: Have any candidate landing sites for the Mars base been identified?
A (Elon): Landing site needs to be low altitude to maximize aero braking, be close to ice for propellant production and not have giant boulders. Closer to the equator is better too for solar power production and not freezing your ass off.
Q: Who will design and build the ISRU system for the propellant depot, and how far along is it?
A (Elon): SpaceX. Design is pretty far along. It’s a key part of the whole system.
Without ISRU (In-Situ Resource Utilization), BFS is unlikely to ever be able to take humans to Mars affordably enough to enable large colonies. This news is thus of huge importance, and suggests that SpaceX will be able to focus on developing BFR and BFS near-term.

Another hypothetical SpaceX city on Mars. Bases will need to be located near water resources. (SpaceX)
SpaceX Big F** Spaceship (BFS)
Q: Will the BFS landing propellants have to be actively cooled on the long trip to Mars?
A (Elon): The main tanks will be vented to vacuum, the outside of the ship is well insulated (primarily for reentry heating) and the nose of the ship will be pointed mostly towards the sun, so very little heat is expected to reach the header tanks. That said, the propellant can be cooled either with a small amount of evaporation. Down the road, we might add a cryocooler.
A (Elon): exactly (while methane could be kept in its liquid form solely through high pressure storage, the pressures required are immense and would require tanks that would be far too heavy for a rocket’s second stage.
Cold liquid oxygen and methane will unavoidably warm up over time, eventually returning to their gaseous forms if allowed. SpaceX’s solution for BFS, which will spend several months between Earth and Mars, is to rely on the Ship’s already great insulation, as well as minimal evaporative cooling (similar to how swamp coolers work).
Q: Will the BFS heat shield be mounted on the skin, or embedded?
A (Elon): The heat shield plates will be mounted directly to the primary tank wall. That’s the most mass efficient way to go. Don’t want to build a box in box.

Dragon 2’s PICA-X heat shield can be seen on the right. BFS’s heat shield will be made of the same material, albeit on a much larger scale. (SpaceX)
Q: Can the BFS delta wings and heat shield be removed for deep space missions?
A (Elon): Wouldn’t call what BFS has a delta wing. It is quite small (and light) relative to the rest of the vehicle and is never actually used to generate lift in the way that an aircraft wing is used.
Its true purpose is to “balance out” the ship, ensuring that it doesn’t enter engines first from orbit (that would be really bad), and provide pitch and yaw control during reentry.
Q: Why is the 2017 BFS spaceship largely cylindrical?
A (Elon): Best mass ratio is achieved by not building a box in a box. The propellant tanks need to be cylindrical to be remotely mass efficient and they have to carry ascent load, so lowest mass solution is just to mount the heat shield plates directly to the tank wall.
For a rocket, mass ratio refers to its weight with a full load of propellant divided by its weight while completely empty. The lighter a rocket’s structure, the more mass it can lift into a given orbit.
- SpaceX’s conceptual Interplanetary Transport System from 2016 was considerably larger and more structurally complex than 2017’s BFR. (SpaceX)
- The relatively cylindrical BFS reduces complexity and lowers weight. (SpaceX)
Q: How does the BFS achieve vertical stabilization, without a tail?
A (Elon): Tails are lame
A (Elon): +1 (The space shuttle’s vertical stabilizer was completely useless for most of the reentry profile, as it was in complete aerodynamic shadow. I think it’s clear a craft doesn’t need one for reentry, only for subsonic gliding, which BFS doesn’t really do.)
BFS doesn’t need a tail because tails add weight, are of little use during orbital reentry, and BFS is not intended to glide.
Q: Why was the number of BFS landing legs increased from 3 to 4?
A (Elon): Because 4
A (Elon): Improves stability in rough terrain
Q: How is the radiation shielding in the ITS?
A (Elon): Ambient radiation damage is not significant for our transit times. Just need a solar storm shelter, which is a small part of the ship. Buzz Aldrin is 87.
While radiation fearmongers may balk at this statement, it is to some extent true. The risks from radiation (PDF) for a six month journey in deep space are approximately similar to several dozen CT scans, while two years spent on the surface of Mars with little to no shielding would result in about the same amount of exposure. Underground habitats could alleviate a considerable amount of the risk from living on Mars’ surface.
The issues and dangers posed by radiation ought not be trivialized but they can be dealt with, particularly if BFR can deliver massive payloads to the planet.
Q: Why was the location and shape of the BFS header/landing tanks changed?
A (Elon): The aspiration by the change was to avoid/minimize plumbing hell, but we don’t super love the current header tank/plumbing design. Further refinement is likely.
Header tanks refer to smaller tanks contained within the main propellant tanks that are used to ignite engines in microgravity. It’s easier to pressurize or simply fill the smaller tanks than it is to do so with the massive main tanks.

BFS’ header tanks circled in red. (SpaceX)
BFS Tanker
Q: Will the BFS tanker’s payload section be empty, or include extra propellant tanks?
A (Elon): At first, the tanker will just be a ship with no payload. Down the road, we will build a dedicated tanker that will have an extremely high full to empty mass ratio (warning: it will look kinda weird).
Using one version of the BFS as both a tanker and ship will streamline the initial development process for the rocket.

Two Spaceships docked for refuelling. (SpaceX)
Q: Will the BFS tanker ships (have to) do a hoverslam landing?
A (Elon): Landing will not be a hoverslam, depending on what you mean by the “slam” part. Thrust to weight of 1.3 will feel quite gentle. The tanker will only feel the 0.3 part, as gravity cancels out the 1. Launch is also around 1.3 T/W, so it will look pretty much like a launch in reverse….
BFS will land relatively gently, and BFR’s liftoff will also be gentle.
Development schedule
Q: With the first two cargo missions scheduled to land on Mars in 2022, what kind of development progress can we expect to see from SpaceX in the next 5 or so years leading up to the maiden flight?
Will we see BFS hops or smaller test vehicles similar to Grasshopper/F9R-Dev? Facilities being built? Propellant plant testing? etc. etc.
A (Elon): A lot. Yes, yes, and yes.
A (Elon): Will be starting with a full-scale Ship doing short hops of a few hundred kilometers altitude and lateral distance. Those are fairly easy on the vehicle, as no heat shield is needed, we can have a large amount of reserve propellant and don’t need the high area ratio, deep space Raptor engines.
Next step will be doing orbital velocity Ship flights, which will need all of the above. Worth noting that BFS is capable of reaching orbit by itself with low payload, but having the BF Booster increases payload by more than an order of magnitude. Earth is the wrong planet for single stage to orbit. No problemo on Mars.
The first real tests of the BFR will be done by hopping a full-scale BFS “several hundred kilometers”. BFS is capable of launching itself and a tiny payload into orbit, but the utility is limited on Earth. On Mars, BFS will be far more capable as a single stage to orbit (SSTO) launch vehicle.
- F9R-dev, used to test vertical take off and landing for Falcon 9. BFR will go through a similar program with its spaceship upper stage prior to orbital missions. (Steve Jurvetson)
- F9R sadly suffered a software bug and self-destructed in 2014, but SpaceX had already learned most of what it needed to begin Falcon 9 recoveries. (Steve Jurvetson)
Raptor and rocket propulsion
Q: Why was Raptor thrust reduced from ~300 tons-force to ~170 tons-force?
A (Elon): We chickened out. The engine thrust dropped roughly in proportion to the vehicle mass reduction from the first IAC talk. In order to be able to land the BF Ship with an engine failure at the worst possible moment, you have to have multiple engines. The difficulty of deep throttling an engine increases in a non-linear way, so 2:1 is fairly easy, but a deep 5:1 is very hard. Granularity is also a big factor. If you just have two engines that do everything, the engine complexity is much higher and, if one fails, you’ve lost half your power. Btw, we modified the BFS design since IAC to add a third medium area ratio Raptor engine partly for that reason (lose only 1/3 thrust in engine out) and allow landings with higher payload mass for the Earth to Earth transport function.
The Raptor engine’s maximum thrust has been decreased mainly because the size of the rocket decreased, from 12m to 9m in diameter. For redundancy’s sake, SpaceX has added a third central engine to the spaceship, versus the two engines mentioned at the 2017 IAC.

BFS’ delta “wings” from the rear of the ship. Also shown are the Raptors, with the two in the center now reportedly expanded to three engines. (SpaceX)
Q: Will the BFR autogenous pressurization system be heat exchanger based?
A (Elon): We plan to use the Incendio spell from Harry Potter
A (Elon): But, yes and probably
Autogenous pressurization refers to the method of propellant tank pressurization used. In microgravity conditions, tanks must be pressurized to keep fuel flowing to the engines and to improve the density of the fuel. While Falcon 9 currently uses high-pressure helium, ITS and now BFR have been designed to use the actual propellant in their tanks (methane and oxygen) for pressurization. This reduces the number of failure modes on BFR and improves the spaceship’s payload capabilities.
Q: Will the BFS methalox control thrusters be derived from Raptor or from SuperDraco engines?
A (Elon): The control thrusters will be closer in design to the Raptor main chamber than SuperDraco and will be pressure-fed to enable lowest possible impulse bit (no turbopump spin delay).
Like Falcon 9, BFR will need gas thrusters (RCS, reaction control system) to control its orientation (and refuel) while in microgravity conditions. While Falcon uses cold nitrogen gas thrusters, BFR will utilize the propellant it is already carrying for Raptor, methane and oxygen. Again, the goal of this is to reduce complexity.
Q: Could you update us on the status of scaling up the Raptor prototype to the final size?
A (Elon): Thrust scaling is the easy part. Very simple to scale the dev Raptor to 170 tons.
The flight engine design is much lighter and tighter, and is extremely focused on reliability. The objective is to meet or exceed passenger airline levels of safety. If our engine is even close to a jet engine in reliability, has a flak shield to protect against a rapid unscheduled disassembly and we have more engines than the typical two of most airliners, then exceeding airline safety should be possible.
That will be especially important for point to point journeys on Earth. The advantage of getting somewhere in 30 mins by rocket instead of 15 hours by plane will be negatively affected if “but also, you might die” is on the ticket.
SpaceX’s subscale Raptor, the one seen in videos and photos of it firing, is understood to be a bit more than half the size of the operational engine described at IAC 2017. Increasing the scale of the engine is not the difficult aspect of development. Rather, optimization, weight reduction, and extreme reusability are the main sources of difficulty needed before Raptor is flight-ready. This reusability is central to the goal of reliable and rapid reuse of orbital-class rockets.
- SpaceX revealed this stunning photo of Raptor’s first (partial) hot-fire test the night before Musk’s talk at Guadalajara. (SpaceX)
- SpaceX’s subscale Raptor engine has completed more than 1200 seconds of testing in less than two years. (SpaceX)
Q: Can BFS vacuum-Raptors be fired at sea level pressure?
A: The “vacuum” or high area ratio Raptors can operate at full thrust at sea level. Not recommended.
Put simply, vacuum nozzles do not like to operate in an atmosphere.
Mars communications
Q: Does SpaceX have any interest in putting more satellites in orbit around Mars (or even rockets) for internet/communications before we get feet on the ground? Or are the current 5-6 active ones we have there sufficient?
A (Elon): Yes
Q: Also will there be some form of an internet or communications link with Earth? Is SpaceX going to be in charge of putting this in or are you contracting some other companies?
A (Elon): If anyone wants to build a high bandwidth comm link to Mars, please do.
Taken side by side, this likely indicates that SpaceX will develop a high-bandwidth Mars-Earth communications link if nobody else does, but that they would logical prefer that someone else builds that infrastructure beforehand.
Q: The concept of an internet connection on Mars is kinda awesome. You could theoretically make an internet protocol that would mirror a subset of the internet near Mars. A user would need to queue up the parts of the internet they wanted available and the servers would sync the relevant data.
A (Elon): Nerd
A (Elon): But, yes, it would make sense to strip the headers out and do a UDP-style feed with extreme compression and a CRC check to confirm the packet is good, then do a batch resend of the CRC-failed packets. Something like that. Earth to Mars is over 22 light-minutes at max distance.
A (Elon): 3 light-minutes at closest distance. So you could Snapchat, I suppose. If that’s a thing in the future.
The communication delay between Earth and Mars (at least several minutes one-way) will prevent any Martian habitats from simply integrating with Earth’s Internet. The delay will require some sort of mediation. As an example, a user on Mars could select the websites they want to browse or videos they want to watch beforehand, and they would be available between several minutes and an hour later.

SpaceX’s Starlink satellite constellation efforts could provide the company with valuable experience that can be applied around Mars. (unofficial logo by Eric Ralph)
Boring!
Q: Boring question about Mars:
A (Elon): More boring!
Miscellaneous silliness
Q: This is one bizarre AMA so far…
A (Elon): Just wait…
Q: i feel like thats a threat. “just wait. it will get way more bizarre than that. let me finish my whiskey”
A (Elon): How did you know? I am actually drinking whiskey right now. Really.
…No comment…
All things considered, this was a wildly successful AMA. Elon clearly had a whole lot of fun, the audience got lightheartedly trolled, and SpaceX fans will undoubtedly be chewing over the technical details he elucidated for weeks to come. Special thanks are owed to the subreddit /r/SpaceX and user /u/_Rocket_, who together managed to flood the AMA with an array of intelligent, pointed, and reasonable questions, at least ten of which were answered by Musk.
News
Neuralink Blindsight human trials expected to start in the UAE
Neuralink aims to restore vision with its Blindsight BCI implant. First human implant for Blindsight may happen in UAE.

During Elon Musk’s interview at the Qatar Economic Forum, he announced that Neuralink aims to implant its Blindsight brain-to-computer interface (BCI) device in a human patient by late 2025 or early 2026.
Blindsight focuses on restoring vision. A few years ago, Musk mentioned that Neuralink’s BCI devices would restore vision for people, even those born blind.
“The first two applications we’re going to aim for in humans are restoring vision, and I think this is notable in that even if someone has never had vision ever, like they were born blind, we believe we can still restore vision. The visual part of the cortex is still there. Even if they’ve never seen before, we’re confident they could see,” Musk said during Neuralink’s Show & Tell in 2022.
Musk said Blindsight could be implanted into a human patient in the United Arab Emirates (UAE). Neuralink plans to partner with the Cleveland Clinic Abu Dhabi to implant the first human patient with Blindsight.
Elon Musk’s neurotechnology company is partnering with the Cleveland Clinic Abu Dhabi to conduct the first clinical trial of the UAE-PRIME study. Like Neuralink’s PRIME study in the United States, UAE-PRIME will focus on human patients with motor and speech impairments.
Neuralink received Food and Drug Administration (FDA) approval to conduct the PRIME and CONVOY studies in the United States. PRIME tests the capabilities of the company’s Link implant to restore or enable motor and speech in participants. Meanwhile, the CONVOY study explores Link’s ability to control assistive robotic devices. Neuralink already has an assistive robotic arm called ARA that could expand patients’ autonomy beyond smart devices.
Blindsight would probably require a separate study from PRIME and CONVOY. As such, Neuralink might need FDA approval in the United States to start human trials for Blindsight. However, Blindsight already received a “breakthrough device” designation from the US FDA.
In April 2025, Neuralink opened its patient registry to participants worldwide. The neurotechnology company has already implanted its Link BCI device into five patients. Earlier this year, Neuralink welcomed one of its first PRIME study participants as the first patient in its CONVOY study.
Elon Musk
Elon Musk just revealed more about Tesla’s June Robotaxi launch
Tesla CEO Elon Musk gave more information about the Robotaxi launch in Austin set for June.

Tesla CEO Elon Musk just revealed more details about the company’s June Robotaxi launch, which will kick off in Austin.
As of right now, Tesla is still set to push out the first Robotaxi rides in Austin, Texas, in early June. These vehicles will be in short supply at first, as Musk says the company is purposely rolling out the fleet in a slow and controlled fashion to prioritize safety. There will be ten vehicles in the Robotaxi fleet to start.
Tesla Robotaxi deemed a total failure by media — even though it hasn’t been released
However, in an interview with CNBC on Tuesday afternoon, Musk also revealed some other new details, including where in Austin the vehicles will be able to go, how many Robotaxis we could see on public roads within a few months, and other information regarding Tesla’s Full Self-Driving suite.
A Controlled Rollout
Tesla has maintained for a few months now that the Robotaxi fleet will be comprised of between 10 and 20 Model Y vehicles in Austin.
The Cybercab, which was unveiled by the company last October, will not be available initially, as those cars will likely be produced in 2026.
Musk said during the CNBC interview that Tesla is doing a low-yield trial at first to initiate a safety-first mentality. It is important for Tesla to launch the Robotaxi fleet in a small manner to keep things in check, at least at first.
As confidence builds and the accuracy of the fleet is ensured, more vehicles will be added to the fleet.
Musk believes there will be 1,000 Robotaxis on the road “in a few months.”
Geofenced to Certain Austin Areas
Tesla will be launching the Robotaxi program in a geofenced fashion that gives the company the ability to control where it goes. Musk says that the areas the Robotaxis will be able to travel to are among the safest neighborhoods and areas in Austin.
This is yet another safety protocol that will ensure the initial riders are not put in dangerous neighborhoods.
Some might be disappointed to hear this because of Tesla’s spoken confidence regarding Robotaxi, but the initial rollout does need to be controlled for safety reasons. An accident or incident of any kind that would put riders’ lives in danger would be catastrophic.
No Driver, No Problem
As the company has rolled out an employee-only version of the Robotaxi program in Austin and the San Francisco Bay Area, some wondered whether the rides would be driverless, as these initial trials for Tesla workers were not. Employee rides featured a human in the driver’s seat to ensure safety.
Tesla says it has launched ride-hailing Robotaxi teaser to employees only
The company did not report whether there were any interventions or not, but it did state that the vehicles traveled over 15,000 miles through 1,500 trips.
Musk confirmed during the interview that there will be no driver in the vehicle when the Robotaxi program launches in June. This will be groundbreaking as it will be the first time that Tesla vehicles will operate on public roads without anyone in the driver’s seat.
Full Self-Driving Licensing
For more than a year, Tesla has indicated that it is in talks with another major automaker regarding the licensing of Full Self-Driving. Many speculated that the company was Ford, but neither it nor Tesla confirmed this.
Musk said today that Tesla has been in touch with “a number of automakers” that have inquired about licensing FSD. Tesla has yet to sign any deal to do so.
Here is the full interview with @elonmusk talking about Tesla and the Cybercab! pic.twitter.com/992njb0lPS
— Robin (@xdNiBoR) May 20, 2025
Elon Musk
Elon Musk on Tesla vehicle sales: “We see no problem with demand”
“The sales numbers at this point are strong, and we see no problem with demand,” Musk said.

During a rather testy interview with Bloomberg’s Mishal Husain at the Qatar Economic Forum, Elon Musk stated that the demand for Tesla’s vehicles is still strong. Musk also stated that the issues that Tesla faced earlier his year have already turned around.
Already Turned Around
Tesla sales saw notable drops in the past months, particularly in Europe, where several countries saw drastically fewer Tesla sales year-over-year. Tesla stated in its Q1 2025 vehicle delivery report that the declines were largely due to the company’s changeover to the new Model Y, but media reports nevertheless placed the blame on Musk’s politics and his work with the Trump administration’s Department of Government Efficiency (DOGE).
It was then no surprise that Bloomberg’s Husain pointed out Tesla’s low sales in Europe this April during the interview. When questioned about the matter, Musk stated that things have “already turned around.” Musk also noted that while Tesla sales are down in Europe so far, this is true for numerous other carmakers in the region.
No Problem With Demand
When asked for evidence to back up his claims, Musk stated that Europe is indeed Tesla’s weakest market, but the company remains “strong everywhere else.” He also admitted that while Tesla has “lost some sales from the left,” the company also “gained some from the right.” Musk highlighted the fact that Tesla stock, which is partly affected by analysts with insider information, is trading at near all-time highs.
“The sales numbers at this point are strong, and we see no problem with demand. You can just look at the stock price. If you want the best insider information, the stock market analysts have that, and our stock wouldn’t be trading near all-time highs if things weren’t in good shape. They’re fine. Don’t worry about it,” Musk said.
Watch Elon Musk’s full interview at the Qatar Economic Forum in the video below.
-
News2 weeks ago
Tesla Cybertruck Range Extender gets canceled
-
Elon Musk5 days ago
Tesla seems to have fixed one of Full Self-Driving’s most annoying features
-
Lifestyle2 weeks ago
Anti-Elon Musk group crushes Tesla Model 3 with Sherman tank–with unexpected results
-
News2 weeks ago
Starlink to launch on United Airlines planes by May 15
-
News2 weeks ago
Tesla Semi gets new adoptee in latest sighting
-
News2 weeks ago
Tesla launches its most inexpensive trim of new Model Y
-
News2 weeks ago
US’ base Tesla Model Y has an edge vs Shanghai and Berlin’s entry-level Model Ys
-
News2 weeks ago
Tesla Cybertruck owners get amazing year-long freebie