Connect with us

News

Elon Musk’s SpaceX AMA: Living on Mars, Spaceship Info, Timeline

Published

on

SpaceX CEO Elon Musk hosted a Reddit AMA (Ask Me Anything) earlier this afternoon and spent several hours drinking whiskey, trolling the audience, answering some great questions, and generally having a blast. He revealed a vast array of fascinating new details about SpaceX’s giant new rocket (BFR), its upper stage spaceship (BFS), and much more.

All of Musk’s answers from the AMA have been collated and organized by category below. You’ll want to shy away from the AMA page itself, currently clocking in at more 10,000 comments.

When useful, particularly dense and technical responses have been summarized in italics for a broader audience.

Living on Mars

Q: Obviously there will be an extreme amount of care put into what is sent on the first missions, and the obvious answer of “Solar Panels” and “Fuel Production Equipment” is included, but what else?

A (Elon): Our goal is get you there and ensure the basic infrastructure for propellant production and survival is in place. A rough analogy is that we are trying to build the equivalent of the transcontinental railway. A vast amount of industry will need to be built on Mars by many other companies and millions of people.

Advertisement
-->

Q: Does your Mars city feature permanently anchored BFS spaceships?

A (Elon): Wouldn’t read too much into that illustration

The aforementioned Martian city. Spaceships can be seen near the center. (SpaceX)

Q: Have any candidate landing sites for the Mars base been identified?

A (Elon): Landing site needs to be low altitude to maximize aero braking, be close to ice for propellant production and not have giant boulders. Closer to the equator is better too for solar power production and not freezing your ass off.

Q: Who will design and build the ISRU system for the propellant depot, and how far along is it?

A (Elon): SpaceX. Design is pretty far along. It’s a key part of the whole system.

Advertisement
-->

Without ISRU (In-Situ Resource Utilization), BFS is unlikely to ever be able to take humans to Mars affordably enough to enable large colonies. This news is thus of huge importance, and suggests that SpaceX will be able to focus on developing BFR and BFS near-term. 

Another hypothetical SpaceX city on Mars. Bases will need to be located near water resources. (SpaceX)

SpaceX Big F** Spaceship (BFS)

Q: Will the BFS landing propellants have to be actively cooled on the long trip to Mars?

A (Elon): The main tanks will be vented to vacuum, the outside of the ship is well insulated (primarily for reentry heating) and the nose of the ship will be pointed mostly towards the sun, so very little heat is expected to reach the header tanks. That said, the propellant can be cooled either with a small amount of evaporation. Down the road, we might add a cryocooler.

A (Elon): exactly (while methane could be kept in its liquid form solely through high pressure storage, the pressures required are immense and would require tanks that would be far too heavy for a rocket’s second stage.

Cold liquid oxygen and methane will unavoidably warm up over time, eventually returning to their gaseous forms if allowed. SpaceX’s solution for BFS, which will spend several months between Earth and Mars, is to rely on the Ship’s already great insulation, as well as minimal evaporative cooling (similar to how swamp coolers work).  

Q: Will the BFS heat shield be mounted on the skin, or embedded?

Advertisement
-->

A (Elon): The heat shield plates will be mounted directly to the primary tank wall. That’s the most mass efficient way to go. Don’t want to build a box in box.

Dragon 2’s PICA-X heat shield can be seen on the right. BFS’s heat shield will be made of the same material, albeit on a much larger scale. (SpaceX)

Q: Can the BFS delta wings and heat shield be removed for deep space missions?

A (Elon): Wouldn’t call what BFS has a delta wing. It is quite small (and light) relative to the rest of the vehicle and is never actually used to generate lift in the way that an aircraft wing is used.

Its true purpose is to “balance out” the ship, ensuring that it doesn’t enter engines first from orbit (that would be really bad), and provide pitch and yaw control during reentry.

Q: Why is the 2017 BFS spaceship largely cylindrical?

A (Elon): Best mass ratio is achieved by not building a box in a box. The propellant tanks need to be cylindrical to be remotely mass efficient and they have to carry ascent load, so lowest mass solution is just to mount the heat shield plates directly to the tank wall.

Advertisement
-->

For a rocket, mass ratio refers to its weight with a full load of propellant divided by its weight while completely empty. The lighter a rocket’s structure, the more mass it can lift into a given orbit. 

Q: How does the BFS achieve vertical stabilization, without a tail?

A (Elon): Tails are lame

A (Elon): +1 (The space shuttle’s vertical stabilizer was completely useless for most of the reentry profile, as it was in complete aerodynamic shadow. I think it’s clear a craft doesn’t need one for reentry, only for subsonic gliding, which BFS doesn’t really do.)

BFS doesn’t need a tail because tails add weight, are of little use during orbital reentry, and BFS is not intended to glide. 

Advertisement
-->

Q: Why was the number of BFS landing legs increased from 3 to 4?

A (Elon): Because 4

A (Elon): Improves stability in rough terrain

Q: How is the radiation shielding in the ITS?

A (Elon): Ambient radiation damage is not significant for our transit times. Just need a solar storm shelter, which is a small part of the ship. Buzz Aldrin is 87.

Advertisement
-->

While radiation fearmongers may balk at this statement, it is to some extent true. The risks from radiation (PDF) for a six month journey in deep space are approximately similar to several dozen CT scans, while two years spent on the surface of Mars with little to no shielding would result in about the same amount of exposure. Underground habitats could alleviate a considerable amount of the risk from living on Mars’ surface. 

The issues and dangers posed by radiation ought not be trivialized but they can be dealt with, particularly if BFR can deliver massive payloads to the planet. 

Q: Why was the location and shape of the BFS header/landing tanks changed?

A (Elon): The aspiration by the change was to avoid/minimize plumbing hell, but we don’t super love the current header tank/plumbing design. Further refinement is likely.

Header tanks refer to smaller tanks contained within the main propellant tanks that are used to ignite engines in microgravity. It’s easier to pressurize or simply fill the smaller tanks than it is to do so with the massive main tanks. 

Advertisement
-->

BFS’ header tanks circled in red. (SpaceX)

BFS Tanker

Q: Will the BFS tanker’s payload section be empty, or include extra propellant tanks?

A (Elon): At first, the tanker will just be a ship with no payload. Down the road, we will build a dedicated tanker that will have an extremely high full to empty mass ratio (warning: it will look kinda weird).

Using one version of the BFS as both a tanker and ship will streamline the initial development process for the rocket. 

Two Spaceships docked for refuelling. (SpaceX)

Q: Will the BFS tanker ships (have to) do a hoverslam landing?

A (Elon): Landing will not be a hoverslam, depending on what you mean by the “slam” part. Thrust to weight of 1.3 will feel quite gentle. The tanker will only feel the 0.3 part, as gravity cancels out the 1. Launch is also around 1.3 T/W, so it will look pretty much like a launch in reverse….

BFS will land relatively gently, and BFR’s liftoff will also be gentle. 

 

Advertisement
-->

Development schedule

Q: With the first two cargo missions scheduled to land on Mars in 2022, what kind of development progress can we expect to see from SpaceX in the next 5 or so years leading up to the maiden flight?

Will we see BFS hops or smaller test vehicles similar to Grasshopper/F9R-Dev? Facilities being built? Propellant plant testing? etc. etc.

A (Elon): A lot. Yes, yes, and yes.

A (Elon): Will be starting with a full-scale Ship doing short hops of a few hundred kilometers altitude and lateral distance. Those are fairly easy on the vehicle, as no heat shield is needed, we can have a large amount of reserve propellant and don’t need the high area ratio, deep space Raptor engines.

Next step will be doing orbital velocity Ship flights, which will need all of the above. Worth noting that BFS is capable of reaching orbit by itself with low payload, but having the BF Booster increases payload by more than an order of magnitude. Earth is the wrong planet for single stage to orbit. No problemo on Mars.

Advertisement
-->

The first real tests of the BFR will be done by hopping a full-scale BFS “several hundred kilometers”. BFS is capable of launching itself and a tiny payload into orbit, but the utility is limited on Earth. On Mars, BFS will be far more capable as a single stage to orbit (SSTO) launch vehicle. 

 

Raptor and rocket propulsion

Q: Why was Raptor thrust reduced from ~300 tons-force to ~170 tons-force?

A (Elon): We chickened out. The engine thrust dropped roughly in proportion to the vehicle mass reduction from the first IAC talk. In order to be able to land the BF Ship with an engine failure at the worst possible moment, you have to have multiple engines. The difficulty of deep throttling an engine increases in a non-linear way, so 2:1 is fairly easy, but a deep 5:1 is very hard. Granularity is also a big factor. If you just have two engines that do everything, the engine complexity is much higher and, if one fails, you’ve lost half your power. Btw, we modified the BFS design since IAC to add a third medium area ratio Raptor engine partly for that reason (lose only 1/3 thrust in engine out) and allow landings with higher payload mass for the Earth to Earth transport function.

The Raptor engine’s maximum thrust has been decreased mainly because the size of the rocket decreased, from 12m to 9m in diameter. For redundancy’s sake, SpaceX has added a third central engine to the spaceship, versus the two engines mentioned at the 2017 IAC. 

Advertisement
-->

BFS’ delta “wings” from the rear of the ship. Also shown are the Raptors, with the two in the center now reportedly expanded to three engines. (SpaceX)

Q: Will the BFR autogenous pressurization system be heat exchanger based?

A (Elon): We plan to use the Incendio spell from Harry Potter

A (Elon): But, yes and probably

Autogenous pressurization refers to the method of propellant tank pressurization used. In microgravity conditions, tanks must be pressurized to keep fuel flowing to the engines and to improve the density of the fuel. While Falcon 9 currently uses high-pressure helium, ITS and now BFR have been designed to use the actual propellant in their tanks (methane and oxygen) for pressurization. This reduces the number of failure modes on BFR and improves the spaceship’s payload capabilities.

Q: Will the BFS methalox control thrusters be derived from Raptor or from SuperDraco engines?

A (Elon): The control thrusters will be closer in design to the Raptor main chamber than SuperDraco and will be pressure-fed to enable lowest possible impulse bit (no turbopump spin delay).

Advertisement
-->

Like Falcon 9, BFR will need gas thrusters (RCS, reaction control system) to control its orientation (and refuel) while in microgravity conditions. While Falcon uses cold nitrogen gas thrusters, BFR will utilize the propellant it is already carrying for Raptor, methane and oxygen. Again, the goal of this is to reduce complexity. 

Q: Could you update us on the status of scaling up the Raptor prototype to the final size?

A (Elon): Thrust scaling is the easy part. Very simple to scale the dev Raptor to 170 tons.

The flight engine design is much lighter and tighter, and is extremely focused on reliability. The objective is to meet or exceed passenger airline levels of safety. If our engine is even close to a jet engine in reliability, has a flak shield to protect against a rapid unscheduled disassembly and we have more engines than the typical two of most airliners, then exceeding airline safety should be possible.

That will be especially important for point to point journeys on Earth. The advantage of getting somewhere in 30 mins by rocket instead of 15 hours by plane will be negatively affected if “but also, you might die” is on the ticket.

Advertisement
-->

SpaceX’s subscale Raptor, the one seen in videos and photos of it firing, is understood to be a bit more than half the size of the operational engine described at IAC 2017. Increasing the scale of the engine is not the difficult aspect of development. Rather, optimization, weight reduction, and extreme reusability are the main sources of difficulty needed before Raptor is flight-ready. This reusability is central to the goal of reliable and rapid reuse of orbital-class rockets. 

 

Q: Can BFS vacuum-Raptors be fired at sea level pressure?

A: The “vacuum” or high area ratio Raptors can operate at full thrust at sea level. Not recommended.

Put simply, vacuum nozzles do not like to operate in an atmosphere.

Advertisement
-->

Mars communications

Q: Does SpaceX have any interest in putting more satellites in orbit around Mars (or even rockets) for internet/communications before we get feet on the ground? Or are the current 5-6 active ones we have there sufficient?

A (Elon): Yes

Q: Also will there be some form of an internet or communications link with Earth? Is SpaceX going to be in charge of putting this in or are you contracting some other companies?

A (Elon): If anyone wants to build a high bandwidth comm link to Mars, please do.

Taken side by side, this likely indicates that SpaceX will develop a high-bandwidth Mars-Earth communications link if nobody else does, but that they would logical prefer that someone else builds that infrastructure beforehand.

Advertisement
-->

Q: The concept of an internet connection on Mars is kinda awesome. You could theoretically make an internet protocol that would mirror a subset of the internet near Mars. A user would need to queue up the parts of the internet they wanted available and the servers would sync the relevant data.

A (Elon): Nerd

A (Elon): But, yes, it would make sense to strip the headers out and do a UDP-style feed with extreme compression and a CRC check to confirm the packet is good, then do a batch resend of the CRC-failed packets. Something like that. Earth to Mars is over 22 light-minutes at max distance.

A (Elon): 3 light-minutes at closest distance. So you could Snapchat, I suppose. If that’s a thing in the future.

The communication delay between Earth and Mars (at least several minutes one-way) will prevent any Martian habitats from simply integrating with Earth’s Internet. The delay will require some sort of mediation. As an example, a user on Mars could select the websites they want to browse or videos they want to watch beforehand, and they would be available between several minutes and an hour later. 

Advertisement
-->

SpaceX’s Starlink satellite constellation efforts could provide the company with valuable experience that can be applied around Mars. (unofficial logo by Eric Ralph)

 

Boring!

Q: Boring question about Mars:

A (Elon): More boring!

 

Miscellaneous silliness

Q: This is one bizarre AMA so far…

A (Elon): Just wait…

Advertisement
-->

Q: i feel like thats a threat. “just wait. it will get way more bizarre than that. let me finish my whiskey”

A (Elon): How did you know? I am actually drinking whiskey right now. Really.

…No comment…

All things considered, this was a wildly successful AMA. Elon clearly had a whole lot of fun, the audience got lightheartedly trolled, and SpaceX fans will undoubtedly be chewing over the technical details he elucidated for weeks to come. Special thanks are owed to the subreddit /r/SpaceX and user /u/_Rocket_, who together managed to flood the AMA with an array of intelligent, pointed, and reasonable questions, at least ten of which were answered by Musk.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla 2025 Holiday Update: Here’s what it includes, and what it’s missing

Published

on

Credit: Grok

Tesla has finally announced the features for the 2025 Holiday Update, which includes a wide variety of new inclusions that are both functional and just for fun.

The new features are plentiful, but there were a handful of things we were expecting to see based on what we know. We don’t want to sound ungrateful, because there are a lot of great new things on the way with this update.

Here’s what was included:

Grok with Navigation Commands (Beta)

Grok will now have the ability to add and edit navigation destinations, which is a drastic improvement considering Tesla owners had to use their standard voice commands for this in the past.

The utilization of Grok will likely improve the navigation experience by offering some insight into your destination, including reviews and other points of interest nearby.

Advertisement
-->

It will be enabled by using Grok’s “Assistant” personality.

Tesla Photobooth

“Turn your car into a photobooth! Take selfies from inside your Tesla & give yourself a makeover with fun filters, stickers, and emojis. Share with others right from the Tesla app.”

This feature will be available within the Toybox.

Dog Mode Live Activity

When using Dog Mode to keep your four-legged friend comfortable in the car, you’ll now be able to check in on them as it will share periodic snapshots of the cabin, along with live updates on temperature, battery, and climate conditions.

Dashcam Viewer Update

Dashcam clips are awesome, but they’re void of a lot of information, which could be useful in some instances, especially if there is an accident.

Advertisement
-->

Now, there will be additional details included on each Dashcam clip, like speed, steering wheel angle, and Self-Driving state.

Santa Mode

New graphics, trees, and a lock chime are now available.

Light Show Update

A new Light Show, called Jingle Rush, will be available.

Custom Wraps and License Plates in Colorizer

Colorizer will now be known as “Paint Shop” in the Toybox. You will now be able to personalize your Tesla Avatar with window tints, custom wraps, and license plates. Preloaded designs will be available, but owners will be able to use their USB Flash Drives to create one that suits their style.

Navigation Improvements

Changing the order of your destinations will be easier through a new “Favorites” tab, and Home and Work can now be set by dropping a pin.

Advertisement
-->

There will also be “Suggested Destinations,” which will be determined through recent trips and habits while parked.

Supercharger Site Map

Perhaps the most significant feature of the Holiday Update, Tesla is adding a 3D view of select Tesla Superchargers by tapping “View Site Map.”

When navigating to a location with this capability, the site layout, live occupancy, and nearby amenities will be available. Drivers will also be able to choose which stall to Supercharge.

This is only available at a handful of locations currently, but it will expand to more Superchargers as it becomes more robust.

Automatic Carpool Lane Routing

Navigation will include an option to utilize carpool lanes. Your route will automatically choose the carpool lane when eligible.

Advertisement
-->

Phone Left Behind Chime

If the in-car occupant detection system does not see anyone in the car and there is a phone key, or if a phone is left inside the cabin, your Tesla will chime a few seconds after the doors close.

Charge Limit Per Location

You can now save a charge limit for the current location while parked and it will be applied automatically the next time you charge there.

ISS Docking Simulator

In a SpaceX collaboration, Tesla has added this game to its in-car Arcade:

“Become an astronaut and prove your skills by docking with the International Space Station. Control & guide the rocket in this 3D docking simulator game using a set of controls based on actual interfaces used by NASA astronauts.”

Additional Improvements

  • Enable or disable wireless phone charging pads in Controls > Charging (S3XY) or Controls > Outlets & Mods (Cybertruck)
  • Add Spotify tracks to your queue right from the search screen & scroll through large Spotify playlists, albums, podcasts, audiobooks & your library seamlessly, without paging
  • Take the vibes up another level with rainbow colors during Rave Cave. Accent lights color will change along with the beats of your music. App Launcher > Toybox > Light Sync
  • Lock Sound now includes Light Cycle from Tron Mode. Toybox > Boombox > Lock Sound

What’s Missing

There are a handful of features we expected to see with the Holiday Update, but were not included.

Banish Feature

Tesla has been teasing the Banish functionality for quite a few years, but evidently, it is not quite there yet.

Advertisement
-->

Banish will allow owners to get out of their vehicle at the entrance of their destination, and the car will go find a spot and park itself. Some refer to it as “Reverse Summon.”

Apple CarPlay

With all of the rumors regarding Apple CarPlay and then the evidence that Tesla was working to bring CarPlay to vehicles, we really expected it to come with the Holiday Update.

Tesla reportedly testing Apple CarPlay integration: report

We’re not upset it’s not here, though. Tesla’s in-car UI is significantly better, at least in our opinion.

Parking Spot Selection

One of the biggest gripes about the new Arrival Features with Full Self-Driving v14 is that choosing a set parking spot is not available. This is especially frustrating for Tesla owners who rent or live in townhouse neighborhoods or apartment complexes with assigned parking.

Advertisement
-->

Tesla seems to be working on this based on the release notes for v14.2, where it said future capabilities would include Parking Spot Selection.

Continue Reading

News

Man credits Grok AI with saving his life after ER missed near-ruptured appendix

The AI flagged some of the man’s symptoms and urged him to return to the ER immediately and demand a CT scan.

Published

on

Credit: Grok Imagine

A 49-year-old man has stated that xAI’s Grok ended up saving his life when the large language model identified a near-ruptured appendix that his first ER visit dismissed as acid reflux. 

After being sent home from the ER, the man asked Grok to analyze his symptoms. The AI flagged some of the man’s symptoms and urged him to return immediately and demand a CT scan. The scan confirmed that something far worse than acid reflux was indeed going on.

Grok spotted what a doctor missed

In a post on Reddit, u/Tykjen noted that for 24 hours straight, he had a constant “razor-blade-level” abdominal pain that forced him into a fetal position. He had no fever or visible signs. He went to the ER, where a doctor pressed his soft belly, prescribed acid blockers, and sent him home. 

The acid blockers didn’t work, and the man’s pain remained intense. He then decided to open a year-long chat he had with Grok and listed every detail that he was experiencing. The AI responded quickly. “Grok immediately flagged perforated ulcer or atypical appendicitis, told me the exact red-flag pattern I was describing, and basically said “go back right now and ask for a CT,” the man wrote in his post. 

He copied Grok’s reasoning, returned to the ER, and insisted on the scan. The CT scan ultimately showed an inflamed appendix on the verge of rupture. Six hours later, the appendix was out. The man said the pain has completely vanished, and he woke up laughing under anesthesia. He was discharged the next day.

Advertisement
-->
How a late-night conversation with Grok got me to demand the CT scan that saved my life from a ruptured appendix (December 2025)
byu/Tykjen ingrok

AI doctors could very well be welcomed

In the replies to his Reddit post, u/Tykjen further explained that he specifically avoided telling doctors that Grok, an AI, suggested he get a CT scan. “I did not tell them on the second visit that Grok recommended the CT scan. I had to lie. I told them my sister who’s a nurse told me to ask for the scan,” the man wrote. 

One commenter noted that the use of AI in medicine will likely be welcomed, stating that “If AI could take doctors’ jobs one day, I will be happy. Doctors just don’t care anymore. It’s all a paycheck.” The Redditor replied with, “Sadly yes. That is what it felt like after the first visit. And the following night could have been my last.”

Elon Musk has been very optimistic about the potential of robots like Tesla Optimus in the medical field. Provided that they are able to achieve human-level articulation in their hands, and Tesla is able to bring down their cost through mass manufacturing, the era of AI-powered medical care could very well be closer than expected. 

Continue Reading

News

Tesla expands Model 3 lineup in Europe with most affordable variant yet

The Model 3 Standard still delivers more than 300 miles of range, potentially making it an attractive option for budget-conscious buyers.

Published

on

Credit: Tesla

Tesla has introduced a lower-priced Model 3 variant in Europe, expanding the lineup just two months after the vehicle’s U.S. debut. The Model 3 Standard still delivers more than 300 miles (480 km) of range, potentially making it an attractive option for budget-conscious buyers.

Tesla’s pricing strategy

The Model 3 Standard arrives as Tesla contends with declining registrations in several countries across Europe, where sales have not fully offset shifting consumer preferences. Many buyers have turned to options such as Volkswagen’s ID.3 and BYD’s Atto 3, both of which have benefited from aggressive pricing.

By removing select premium finishes and features, Tesla positioned the new Model 3 Standard as an “ultra-low cost of ownership” option of its all-electric sedan. Pricing comes in at €37,970 in Germany, NOK 330,056 in Norway, and SEK 449,990 in Sweden, depending on market. This places the Model 3 Standard well below the “premium” Model 3 trim, which starts at €45,970 in Germany. 

Deliveries for the Standard model are expected to begin in the first quarter of 2026, giving Tesla an entry-level foothold in a segment that’s increasingly defined by sub-€40,000 offerings.

Tesla’s affordable vehicle push

The low-cost Model 3 follows October’s launch of a similarly positioned Model Y variant, signaling a broader shift in Tesla’s product strategy. While CEO Elon Musk has moved the company toward AI-driven initiatives such as robotaxis and humanoid robots, lower-priced vehicles remain necessary to support the company’s revenue in the near term.

Advertisement
-->

Reports have indicated that Tesla previously abandoned plans for an all-new $25,000 EV, with the company opting to create cheaper versions of existing platforms instead. Analysts have flagged possible cannibalization of higher-margin models, but the move aims to counter an influx of aggressively priced entrants from China and Europe, many of which sell below $30,000. With the new Model 3 Standard, Tesla is reinforcing its volume strategy in Europe’s increasingly competitive EV landscape.

Continue Reading