News
European spacecraft converge on the US for rides on SpaceX rockets
Thanks in large part to delays suffered by Arianespace’s next-generation Ariane 6 rocket, a small fleet of European satellites are simultaneously converging on the United States to hitch rides into orbit with SpaceX.
SpaceX launching European payloads is nothing new. The company has occasionally launched spacecraft built in Europe for European space agencies or companies, but the combination is exceedingly rare. For several reasons, however, what was once alien is beginning to become commonplace, and that fact is about to be made even clearer over the remainder of 2022.
SpaceX kicked off a string of six or seven launches of spacecraft built by or for Europe on October 15th. Over the weekend, the company’s workhorse Falcon 9 rocket – 70 meters (230 ft) tall, 3.7 meters (12 ft) wide, and capable of producing up to 770 tons (1.7M lbf) of thrust at liftoff – successfully launched the Hotbird 13F communications satellite into a geostationary transfer orbit (GTO) for the French satcom company Eutelsat.
Hotbird 13F is the first of three Eutelsat satellites the company secretly agreed to launch on SpaceX rockets. Hours after its twin’s launch, Hotbird 13G arrived in Florida in a custom Airbus Beluga XL transport jet (its first visit to the US since 2009) and will soon begin preparing for its own ride on a SpaceX rocket as early as November 2022. Eutelsat 10B, also on track to launch on a Falcon 9 rocket sometime in November, likely left France for Florida on an oceangoing Arianespace ship on October 12th.
Normally, selecting the launch provider for communication satellites that cost eight or nine figures is accompanied by a press release and plenty of celebration. That the European Space Agency, Eutelsat, Airbus, and Thales Alenia said next to nothing until the last moment says a lot about how all parties involved really feel about transferring three of their satellites onto SpaceX rockets. Originally, all three were intended to launch on Arianespace’s rockets: Eutelsat 10B on one of the last Ariane 5s and Hotbird 13F and 13G on one of the first Ariane 6s.
It’s not entirely clear why Ariane 5 wasn’t able to launch Eutelsat 10B, but it’s unsurprising that partners ESA, Thales Alenia, Airbus, and Eutelsat decided to move Hotbird 13F and 13G to Falcon 9. The Ariane 6 rocket meant to launch both satellites simultaneously is years behind schedule, and its launch debut recently slipped even further from late 2022 to sometime in 2023. Originally scheduled to debut in mid-2020, it’s now possible – if not likely – that Ariane 6 won’t be ready to launch until the second half of next year (or even later).
Thanks to those delays, the new rocket will enter the scene with a very busy 2023 and 2024 manifest packed with high-value institutional and commercial payloads from all across Europe. In other words, a pair of semi-commercial communications satellites like Hotbird 13F/13G could have easily been forced to wait for a year or more to launch on Ariane 6. Adding insult to injury, Hotbird 13F and 13G are the first two satellites built under the joint European Space Agency and Airbus Eurostar Neo program, and will now be flying on an American rocket built by a company that is almost singlehandedly responsible for ending a golden era of competitive European launch services.
With confidence in Ariane 6’s debut timing lower than ever, a NASA official recently revealed that ESA is even studying the possibility of launching Euclid – a next-generation two-ton space telescope – on SpaceX’s Falcon 9. Euclid was originally scheduled to launch on one of Arianespace’s Russian-built Soyuz 2.1 rockets (or Ariane 6) in mid-2022. That contract was signed in 2020, six years after Russian President Vladimir Putin reminded the world of his instability, recklessness, and brutality by illegally and unofficially invading Ukraine. In February 2022, after months of obvious buildup, Russia doubled down on its Ukraine offensive with an openly genocidal full-scale invasion. In the aftermath, it kidnapped a batch of European OneWeb satellites, requisitioned a Soyuz rocket the company had already paid for, kneecapped a joint European-Russian Mars mission, and (while mostly mutual) revoked its support of European Soyuz launches.
That has effectively removed Russia as a serious option for European launches or collarboration, leaving several European missions and companies in limbo. Britain’s OneWeb, for example, had an exclusive contract with Russia to launch its entire low Earth orbit (LEO) internet satellite constellation on up to 21 Soyuz rockets. After losing $230 million in the process, the company was forced to abruptly shift gears, and is now on track to launch its first batch of satellites since early 2022 on an Indian SLV-3 rocket. One of at least two SpaceX Falcon 9 missions could follow as early as December 2022. Unless Ariane 6 aces its launch debut in the near future, many more European payloads could find themselves in similar positions in 2023 and 2024.
Meanwhile, several other European-made payloads are preparing for Falcon 9 launches. While these payloads have been assigned to SpaceX rockets from the start, they still demonstrate just how big of a bite the US startup has taken out of the European launch industry. Most recently, the joint NASA-ESA-CSA Surface Water and Ocean Topography (SWOT) spacecraft was flown from France to California on October 17th. Falcon 9 will launch SWOT from the California coast as early as December 2022.
Soon, Japanese startup ispace’s first HAKUTO-R Moon lander – largely assembled, tested, and propellant by France’s ArianeGroup – will be transported from Germany to Florida for a November 2022 SpaceX launch. Germany’s second and third SARah radar satellites could head to the US shortly for a Falcon 9 launch tentatively scheduled as early as the final days of 2022 or early 2023. Finally, SpaceX could complete its first OneWeb launch around the same time.
Elon Musk
Tesla announces crazy new Full Self-Driving milestone
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.
The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.
On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.
Tesla owners have now driven >8 billion miles on FSD Supervisedhttps://t.co/0d66ihRQTa pic.twitter.com/TXz9DqOQ8q
— Tesla (@Tesla) February 18, 2026
The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.
The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.
Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.
Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.
This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.
The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.
News
Tesla Cybercab production begins: The end of car ownership as we know it?
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.
Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

Credit: wudapig/Reddit< /a>
While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.
Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.
The Promise – A Radical Shift in Transportation Economics
Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.
Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.
Tesla ups Robotaxi fare price to another comical figure with service area expansion
It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.
However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).
The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.
The Dark Side – Job Losses and Industry Upheaval
With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.
Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.
There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.
Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.
It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.
Balancing Act – Who Wins and Who Loses
There are two sides to this story, as there are with every other one.
The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.
Elon Musk confirms Tesla Cybercab pricing and consumer release date
Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.
Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.
A Call for Thoughtful Transition
The Cybercab’s production debut forces us to weigh innovation against equity.
If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.
Elon on the MKBHD bet, stating “Yes” to the question of whether Tesla would sell a Cybercab for $30k or less to a customer before 2027 https://t.co/sfTwSDXLUN
— TESLARATI (@Teslarati) February 17, 2026
The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.
News
Tesla Model 3 wins Edmunds’ Best EV of 2026 award
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.
This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.
The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.
The Tesla Model 3 has won Edmunds Top EV of 2026:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is… pic.twitter.com/ARFh24nnDX
— TESLARATI (@Teslarati) February 18, 2026
The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”
In its Top Rated EVs piece on its website, it said about the Model 3:
“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”
Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:
“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”
The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.