News
NASA Mars rover completes preflight checks ahead of this week’s launch
NASA’s Perseverance rover headed for Mars this week officially cleared all required Flight Readiness Reviews, pushing the mission one step closer to its launch pad rollout and liftoff. Launch provider ULA (United Launch Alliance) announced the milestone earlier today.
“The Launch Readiness Review (LRR) has given the approval to continue preparations for Thursday’s liftoff of the United Launch Alliance Atlas V rocket carrying NASA’s Mars 2020 mission,” ULA’s official mission page stated. “Leadership from ULA, NASA and the Space Force assessed the readiness of the rocket, payload and mission assets, discussed the status of pre-flight processing work, heard technical overviews of the countdown and flight, and previewed the weather forecast that continues to be favorable with an 80 percent chance of acceptable conditions. At the conclusion of the meeting, senior leaders were polled and gave a unanimous ready status for launch, then signed the Launch Readiness Certificate.”
“I just want to say that the launch readiness review is complete and we are ‘go’ for launch.” Administrator @JimBridenstine shares the latest for the July 30 launch of our @NASAPesereve rover. #CountdownToMars https://t.co/JXscvTFIRt pic.twitter.com/yVEHYrHq4J
— NASA (@NASA) July 27, 2020
NASA followed with two separate live-streamed conferences in an effort to both inform and engage the public about the mission’s details and goals. During the first pre-launch event, key executives for the mission expressed their pride in the Perseverance rover team while making particular note of the challenging circumstances faced during the COVID-19 pandemic. “Every day was taking the kids to work day,” mused Omar Baez, NASA’s Senior Launch Director.
Keeping the 2020 Mars rover mission on schedule has been vitally important compared to other launches due to the timing involved with the seven-month journey to the red planet. “We have a 20 day planetary launch window, and if we miss it, we’re pushing out another couple of years,” explained Matt Wallace, Perseverance’s Deputy Project Manager, during the first conference. NASA’s second conference of the day focused on the engineering details behind the rover’s instruments to fulfill its three primary missions of seeking signs of life, collecting/caching samples, and testing future technologies.
“I would have never thought that a launch director would be working from home, and I’ve done that for the last 5 months.” @NASA_LSP Launch Director Omar Baez shares how the whole @NASAPersevere team adjusted to work in today’s environment. #CountdownToMars pic.twitter.com/rxO49EG5SL
— NASA (@NASA) July 27, 2020
The 2020 rover has many unique instruments that make it stand out from NASA’s other rovers and landers currently residing on Mars. As part of making the search for ancient microbial life its mission priority, Perseverance has a large robotic arm with a multi-bit drill attached for gathering and storing scientifically interesting samples. These specimens will later be brought to Earth as part of a “sample return” mission.
NASA’s newest Mars rover will additionally have two technology tests aboard – one that generates oxygen from the planet’s carbon dioxide atmosphere, the other a small helicopter for gathering aerial data, and enabling more widespread travel possibilities. Perhaps most relatable to many humans’ day-to-day, however, is Perseverance’s “selfie” capabilities. Not just limited to snaps surrounded by regolith and red mountains, once descent and landing begin from Martian orbit, the rover’s numerous cameras will capture the entire event on video and send the footage back to NASA’s team and the public alike.
Perseverance will accomplish its tasks using power provided by a plutonium-238 nuclear energy source with a 14-year lifespan. As the isotope decays, heat is generated and converted into electricity to charge the rover’s batteries. This part of the mission was activated and loaded with Perseverance into its ULA Atlas V rocket last week.
NASA plans the mission’s launch pad rollout tomorrow with an early morning liftoff on Thursday, July 30th.
Elon Musk
Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)
Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.
At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.
The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.
Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.
And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.
SpaceX’s trajectory has been just as dramatic.
The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.
Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.
And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.
In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.
The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”
Energy
Tesla launches Cybertruck vehicle-to-grid program in Texas
The initiative was announced by the official Tesla Energy account on social media platform X.
Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills.
The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.
Texas’ Cybertruck V2G program
In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.
During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.
The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.
Powershare Grid Support
To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.
Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.
News
Samsung nears Tesla AI chip ramp with early approval at TX factory
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.
This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.
Samsung clears early operations hurdle
As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.
City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.
Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips.
Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.
Samsung’s U.S. expansion
Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.
Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.
Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.
One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips.