News
NASA is training SpaceX's first Crew Dragon astronauts for a much longer mission in space
NASA has revealed that the astronauts assigned to SpaceX’s Crew Dragon astronaut launch debut are training for a space station mission many times longer than initially planned.
Scheduled to deliver two NASA astronauts to and from the International Space Station (ISS) no earlier than (NET) late-April or May 2020, Crew Dragon’s Demo-2 mission will be the first crewed launch in SpaceX’s 18-year history. As previously noted on Teslarati (and by NASA itself, briefly), Demo-2 will also mark the first time in history that a privately-built spacecraft attempts to launch humans into orbit.
Still, NASA has funded the development of Crew Dragon (and competitor Boeing’s Starliner) not to achieve firsts but to restore the United States’ ability to launch its own astronauts to the ISS. Along those lines, both Crew Dragon (Demo-2) and Starliner’s (CFT) astronaut test flights were nominally designed to last about a week or two before returning NASA’s astronauts to Earth – a full end-to-end test for both extraordinarily complex vehicles. Two weeks, however, is simply not long enough for those astronauts to practically serve as full members of space station crew, something the ISS generally requires. In response, NASA has been seriously considering extending Boeing’s crewed test flight and has just recently suggested that SpaceX’s own Demo-2 test flight will be similarly upgraded.
About a month ago, SpaceX and NASA talked openly about the possibility of a longer-duration Crew Dragon astronaut launch debut for the first time, potentially extending the amount of time those astronauts are able to spend at the space station from about one week up to 1.5-3 months. This would allow Crew Dragon’s Demo-2 NASA astronauts – Bob Behnken and Doug Hurley – to serve as full members of the ISS crew, expanding the US presence from one to three astronauts.
Ars Technica’s Eric Berger offered some additional details about what exactly NASA might task Behnken and Hurley with on an extended flight earlier this month. Most importantly, the space agency wants the former astronaut – a Space Shuttle and extra-vehicular activity (EVA) veteran – to be (re)trained for spacewalks, allowing him to support an ever-growing to-do list of critical space station repairs and upgrades.

In effect, extending Crew Dragon’s astronaut flight test will make it almost identical to an “operational” flight where Crew Dragon ferries astronauts to the space station, docks for about six months, and finally returns the same astronauts to Earth at the end of its mission. More importantly, though, NASA’s decision to extend Commercial Crew Program (CCP) test flights – kickstarted with Boeing’s beleaguered Starliner spacecraft – is motivated by a desire to prevent the United States’ presence on the space station from dwindling or even regressing to zero in the near future.
Triggered by years of SpaceX and Boeing delays, NASA will now likely have to purchase more seats on Russian Soyuz launches if it wishes to maintain an full, uninterrupted presence on ISS for the next 12-24 months. After suffering numerous deeply concerning software failures on its first and only orbital launch, Boeing’s Starliner is unlikely to be ready to launch crew anytime soon. At the same time, although SpaceX is closer to its astronaut launch debut than ever before, it’s highly unlikely that Crew Dragon can singlehandedly support a full ISS complement of three NASA astronauts while Starliner works out its issues.

As such, NASA is looking everywhere it can to squeeze a bit more on-orbit time out of existing astronaut missions scheduled in the next year or so, and both Starliner and Crew Dragon’s test flights – barring showstoppers – are excellent opportunities. With NASA Johnson Space Center’s confirmation that both Behnken and Hurley are already deep into the extra training needed for an extended flight, chances are good that both astronauts will be ready for a one- or several-month mission by the time that NASA and SpaceX are ready and willing to launch.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla says its Texas lithium refinery is now operational and unlike anything in North America
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
Tesla has confirmed that its Texas lithium refinery is now operational, marking a major milestone for the company’s U.S. battery supply chain. In a newly released video, Tesla staff detailed how the facility converts raw spodumene ore directly into battery-grade lithium hydroxide, making it the first refinery of its kind in North America.
Elon Musk separately described the site as both the most advanced and the largest lithium refinery in the United States.
A first-of-its-kind lithium refining process
In the video, Tesla staff at the Texas lithium refinery near Corpus Christi explained that the facility processes spodumene, a lithium-rich hard-rock ore, directly into battery-grade lithium hydroxide on site. The approach bypasses intermediate refining steps commonly used elsewhere in the industry.
According to the staff, spodumene is processed through kilns and cooling systems before undergoing alkaline leaching, purification, and crystallization. The resulting lithium hydroxide is suitable for use in batteries for energy storage and electric vehicles. Tesla employees noted that the process is simpler and less expensive than traditional refining methods.
Staff at the facility added that the process eliminates hazardous byproducts typically associated with lithium refining. “Our process is more sustainable than traditional methods and eliminates hazardous byproducts, and instead produces a co-product named anhydrite, used in concrete mixes,” an employee noted.
Musk calls the facility the largest lithium refinery in America
The refinery’s development timeline has been very impressive. The project moved from breaking ground in 2023 to integrated plant startup in 2025 by running feasibility studies, design, and construction in parallel. This compressed schedule enabled the fastest time-to-market for a refinery using this type of technology. This 2026, the facility has become operational.
Elon Musk echoed the significance of the project in posts on X, stating that “the largest Lithium refinery in America is now operational.” In a separate comment, Musk described the site as “the most advanced lithium refinery in the world” and emphasized that the facility is “very clean.”
By bringing large-scale lithium hydroxide production online in Texas, Tesla is positioning itself to reduce reliance on foreign refining capacity while supporting its growth in battery and vehicle production. The refinery also complements Tesla’s nascent domestic battery manufacturing efforts, which could very well be a difference maker in the market.
News
Tesla Optimus V3 gets early third-party feedback, and it’s eye-opening
Jason Calacanis’ remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot
Angel investor and entrepreneur Jason Calacanis shared some insights after he got an early look at Tesla’s upcoming Optimus V3. His remarks, which were shared during a discussion at CES 2026, offered one of the first third-party impressions of the yet-to-be-unveiled robot.
Calacanis’ comments were shared publicly on X, and they were quite noteworthy.
The angel investor stated that he visited Tesla’s Optimus lab on a Sunday morning and observed that the place was buzzing with energy. The investor then shared a rare, shocking insight. As per Calacanis, Optimus V3 will be so revolutionary that people will probably not even remember that Tesla used to make cars in the future.
“I don’t want to name drop, but two Sundays ago, I went to Tesla with Elon and I went and visited the Optimus lab. There were a large number of people working on a Sunday at 10 a.m. and I saw Optimus 3. I can tell you now, nobody will remember that Tesla ever made a car,” he noted.
The angel investor also reiterated the primary advantage of Optimus, and how it could effectively change the world.
“They will only remember the Optimus and that he is going to make a billion of those, and it is going to be the most transformative technology product ever made in the history of humanity, because what LLMs are gonna enable those products to do is understand the world and then do things in the world that we don’t want to do. I believe there will be a 1:1 ratio of humans to Optimus, and I think he’s already won,” he said.
While Calacanis’ comments were clearly opinion-driven, they stood out as among the first from a non-Tesla employee about Optimus V3. Considering his reaction to the humanoid robot, perhaps Elon Musk’s predictions for Optimus V3 might not be too far-fetched at all.
Tesla has been careful with its public messaging around Optimus V3’s development stage. Musk has previously stated on X that Optimus V3 has not yet been revealed publicly, clarifying that images and videos of the robot online still show Optimus V2 and V2.5, not the next-generation unit. As for Calacanis’ recent comments, however, Musk responded with a simple “Probably true” in a post on X.
News
Tesla taps Samsung for 5G modems amid plans of Robotaxi ramp: report
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and robotaxi operations.
A report from South Korea has suggested that Samsung Electronics is set to begin supplying 5G automotive modems to Tesla. If accurate, this would mark a major expansion of the two companies’ partnership beyond AI chips and into vehicle connectivity.
The move signals Tesla’s growing focus on supply-chain diversification and next-generation communications as it prepares to scale its autonomous driving and Robotaxi operations.
Samsung’s 5G modem
As per industry sources cited by TheElec, Samsung’s System LSI division has completed development of a dedicated automotive-grade 5G modem for Tesla. The 5G modem is reportedly in its testing phase. Initial supply is expected to begin in the first half of this year, with the first deployments planned for Tesla’s Robotaxi fleet in Texas. A wider rollout to consumer vehicles is expected to follow.
Development of the modem began in early 2024 and it required a separate engineering process from Samsung’s smartphone modems. Automotive modems must meet stricter durability standards, including resistance to extreme temperatures and vibration, along with reliability over a service life exceeding 10 years. Samsung will handle chip design internally, while a partner company would reportedly manage module integration.
The deal represents the first time Samsung has supplied Tesla with a 5G vehicle modem. Tesla has historically relied on Qualcomm for automotive connectivity, but the new agreement suggests that the electric vehicle maker may be putting in some serious effort into diversifying its suppliers as connectivity becomes more critical to autonomous driving.
Deepening Tesla–Samsung ties
The modem supply builds on a rapidly expanding relationship between the two companies. Tesla previously selected Samsung’s foundry business to manufacture its next-generation AI6 chips, a deal valued at more than 22.7 trillion won and announced in mid-2025. Together, the AI chip and 5G modem agreements position Samsung as a key semiconductor partner for Tesla’s future vehicle platforms.
Industry observers have stated that the collaboration aligns with Tesla’s broader effort to reduce reliance on Chinese and Taiwanese suppliers. Geopolitical risk and long-term supply stability are believed to be driving the shift in no small part, particularly as Tesla prepares for large-scale Robotaxi deployment.
Stable, high-speed connectivity is essential for Tesla’s Full Self-Driving system, supporting real-time mapping, fleet management, and continuous software updates. By pairing in-vehicle AI computing with a new 5G modem supplier, Tesla appears to be tightening control over both its hardware stack and its global supply chain.