Connect with us

News

Relativity Space’s first 3D-printed rocket booster passes early tests

Published

on

Relativity Space CEO Tim Ellis says that the startup’s first 3D-printed ‘Terran-1’ rocket booster has already completed a few significant tests after arriving at its Florida launch pad last month.

Terran-1 is an expendable two-stage launch vehicle that, when assembled for the first time, will measure around 33 meters (110 ft) tall, 2.3 meters (7.5 ft) wide, and weigh 9.3 tons (~20,500 lb) empty. Fueled by liquid oxygen and methane (methalox) and powered by nine small Aeon engines, the first Terran booster will produce around 90 tons (~200,000 lbf) of thrust at liftoff. Altogether, the rocket is designed to initially launch up to 1.25 tons (~2750 lb) to low Earth orbit, with plans to expand to 1.5 tons (~3300 lb) in the future. SpaceX’s Falcon 9, for context, measures 3.7 meters (12 ft) wide, 70 meters (~230 ft) tall, likely weighs around 30 tons (~65,000 lb) dry, and can launch 22.8 tons (~50,250 lb) to LEO in an expendable configuration. A single one of its nine Merlin 1D booster engines produces about as much thrust as the entire first stage of Terran-1.

While tiny in comparison, Terran-1’s booster is still a relatively large and powerful rocket, and testing it poses significant challenges. Instead of building a custom test stand elsewhere, Relativity has chosen to conduct almost all first-stage qualification testing at its Cape Canaveral Space Force Station (CCSFS) LC-16 pad. 

That plan increases the risk of the rocket damaging Relativity’s only available launch pad, significantly delaying launch preparations, but it also has the potential to save time by doubling as a launch pad shakedown. Aside from basic concrete features and foundations, LC-16 was essentially a blank slate when Relativity arrived, so qualifying the pad – virtually all of which is new and recently installed – is no small feat on its own.

LC-16, 2022. (Relativity Space)

Relativity’s first Terran-1 flight hardware has performed shockingly well. The smaller single-engine upper stage sailed through a full program of proof tests – including a full-duration static fire – shortly before shipping to LC-16. Terran-1’s first booster, meanwhile, left Relativity’s California factory and arrived at LC-16 to begin its own qualification testing in early June.

A frosty, venting Terran-1 booster is pictured during one of its first cryogenic tests. (Tim Ellis)

On June 28th, CEO Tim Ellis revealed that the booster had already completed “pneumatic proof testing” and made it through its “first propellant loading” test less than a month after arriving at LC-16. That would be fast for the first prototype of any new orbital-class rocket, but Relativity’s Terran-1 has an extremely unique feature that makes that speed even more impressive: by mass, the vast majority (85%) of the rocket was manufactured with 3D printing. In effect, most of Terran’s airframe and tanks are just giant, continuous welds that were precisely manipulated into cylinders, domes, and more. While the rough surface finish leaves something to be desired and likely reduces the overall efficiency of the rocket’s airframe, Relativity says that the composition of the metal in its printed structures is almost identical to a more traditionally-manufactured component.

Relativity’s ultimate hope is that the technical groundwork it is laying will allow it to manufacture complex and high-performance rockets with minimal human intervention, drastically lowering production costs. One day, the descendants of those semi-autonomous factories might even be used to construct rockets and other complex machines and infrastructure on Mars or other extraterrestrial destinations.

Advertisement
-->

First, though, the company needs to start successfully launching Terran-1 rockets and fully prove the concept. Up next, Relativity will likely perform a full wet dress rehearsal, a launch simulation in which the rocket is loaded with propellant and pressurized for flight. Once that step is complete, Relativity will attempt one or several static fire tests, culminating in a full-duration multi-minute static fire or “mission duty cycle.”

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Starlink achieves major milestones in 2025 progress report

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.

Published

on

Credit: Starlink/X

Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.

SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.

Key achievements from Starlink’s 2025 Progress

Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.

Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.

Starlink Direct to Cell

Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.

Advertisement
-->

This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.

starlinkProgressReport_2025 by Simon Alvarez

Continue Reading

News

Tesla Giga Nevada celebrates production of 6 millionth drive unit

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

Published

on

Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.

To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo. 

6 million drive units

The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote. 

The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.

Giga Nevada’s essential role

Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.

Advertisement
-->

Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.

Continue Reading

News

Tesla Supercharger network delivers record 6.7 TWh in 2025

The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.

Published

on

tesla-diner-supercharger
Credit: Tesla

Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide. 

To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.

Record 6.7 TWh delivered in 2025

The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream. 

Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.

This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.

Advertisement
-->

Resilience after Supercharger team changes

2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”

Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.

Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible. 

Continue Reading