Connect with us

News

Relativity Space’s first 3D-printed rocket booster passes early tests

Published

on

Relativity Space CEO Tim Ellis says that the startup’s first 3D-printed ‘Terran-1’ rocket booster has already completed a few significant tests after arriving at its Florida launch pad last month.

Terran-1 is an expendable two-stage launch vehicle that, when assembled for the first time, will measure around 33 meters (110 ft) tall, 2.3 meters (7.5 ft) wide, and weigh 9.3 tons (~20,500 lb) empty. Fueled by liquid oxygen and methane (methalox) and powered by nine small Aeon engines, the first Terran booster will produce around 90 tons (~200,000 lbf) of thrust at liftoff. Altogether, the rocket is designed to initially launch up to 1.25 tons (~2750 lb) to low Earth orbit, with plans to expand to 1.5 tons (~3300 lb) in the future. SpaceX’s Falcon 9, for context, measures 3.7 meters (12 ft) wide, 70 meters (~230 ft) tall, likely weighs around 30 tons (~65,000 lb) dry, and can launch 22.8 tons (~50,250 lb) to LEO in an expendable configuration. A single one of its nine Merlin 1D booster engines produces about as much thrust as the entire first stage of Terran-1.

While tiny in comparison, Terran-1’s booster is still a relatively large and powerful rocket, and testing it poses significant challenges. Instead of building a custom test stand elsewhere, Relativity has chosen to conduct almost all first-stage qualification testing at its Cape Canaveral Space Force Station (CCSFS) LC-16 pad. 

That plan increases the risk of the rocket damaging Relativity’s only available launch pad, significantly delaying launch preparations, but it also has the potential to save time by doubling as a launch pad shakedown. Aside from basic concrete features and foundations, LC-16 was essentially a blank slate when Relativity arrived, so qualifying the pad – virtually all of which is new and recently installed – is no small feat on its own.

LC-16, 2022. (Relativity Space)

Relativity’s first Terran-1 flight hardware has performed shockingly well. The smaller single-engine upper stage sailed through a full program of proof tests – including a full-duration static fire – shortly before shipping to LC-16. Terran-1’s first booster, meanwhile, left Relativity’s California factory and arrived at LC-16 to begin its own qualification testing in early June.

A frosty, venting Terran-1 booster is pictured during one of its first cryogenic tests. (Tim Ellis)

On June 28th, CEO Tim Ellis revealed that the booster had already completed “pneumatic proof testing” and made it through its “first propellant loading” test less than a month after arriving at LC-16. That would be fast for the first prototype of any new orbital-class rocket, but Relativity’s Terran-1 has an extremely unique feature that makes that speed even more impressive: by mass, the vast majority (85%) of the rocket was manufactured with 3D printing. In effect, most of Terran’s airframe and tanks are just giant, continuous welds that were precisely manipulated into cylinders, domes, and more. While the rough surface finish leaves something to be desired and likely reduces the overall efficiency of the rocket’s airframe, Relativity says that the composition of the metal in its printed structures is almost identical to a more traditionally-manufactured component.

Relativity’s ultimate hope is that the technical groundwork it is laying will allow it to manufacture complex and high-performance rockets with minimal human intervention, drastically lowering production costs. One day, the descendants of those semi-autonomous factories might even be used to construct rockets and other complex machines and infrastructure on Mars or other extraterrestrial destinations.

First, though, the company needs to start successfully launching Terran-1 rockets and fully prove the concept. Up next, Relativity will likely perform a full wet dress rehearsal, a launch simulation in which the rocket is loaded with propellant and pressurized for flight. Once that step is complete, Relativity will attempt one or several static fire tests, culminating in a full-duration multi-minute static fire or “mission duty cycle.”

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi has a highly-requested hardware feature not available on typical Model Ys

These camera washers are crucial for keeping the operation going, as they are the sole way Teslas operate autonomously. The cameras act as eyes for the car to drive, recognize speed limit and traffic signs, and travel safely.

Published

on

Credit: David Moss | X

Tesla Robotaxi has a highly-requested hardware feature that is not available on typical Model Ys that people like you and me bring home after we buy them. The feature is something that many have been wanting for years, especially after the company adopted a vision-only approach to self-driving.

After Tesla launched driverless Robotaxi rides to the public earlier this week in Austin, people have been traveling to the Lone Star State in an effort to hopefully snag a ride from one of the few vehicles in the fleet that are now no longer required to have Safety Monitors present.

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Although only a few of those completely driverless rides are available, there have been some new things seen on these cars that are additions from regular Model Ys, including the presence of one new feature: camera washers.

With the Model Y, there has been a front camera washer, but the other exterior “eyes” have been void of any solution for this. For now, owners are required to clean them manually.

In Austin, Tesla is doing things differently. It is now utilizing camera washers on the side repeater and rear bumper cameras, which will keep the cameras clean and keep operation as smooth and as uninterrupted as possible:

These camera washers are crucial for keeping the operation going, as they are the sole way Teslas operate autonomously. The cameras act as eyes for the car to drive, recognize speed limit and traffic signs, and travel safely.

This is the first time we are seeing them, so it seems as if Safety Monitors might have been responsible for keeping the lenses clean and unobstructed previously.

However, as Tesla transitions to a fully autonomous self-driving suite and Robotaxi expands to more vehicles in the Robotaxi fleet, it needed to find a way to clean the cameras without any manual intervention, at least for a short period, until they can return for interior and exterior washing.

Continue Reading

News

Tesla makes big Full Self-Driving change to reflect future plans

Published

on

tesla interior operating on full self driving
Credit: TESLARATI

Tesla made a dramatic change to the Online Design Studio to show its plans for Full Self-Driving, a major part of the company’s plans moving forward, as CEO Elon Musk has been extremely clear on the direction moving forward.

With Tesla taking a stand and removing the ability to purchase Full Self-Driving outright next month, it is already taking steps to initiate that with owners and potential buyers.

On Thursday night, the company updated its Online Design Studio to reflect that in a new move that now lists the three purchase options that are currently available: Monthly Subscription, One-Time Purchase, or Add Later:

This change replaces the former option for purchasing Full Self-Driving at the time of purchase, which was a simple and single box to purchase the suite outright. Subscriptions were activated through the vehicle exclusively.

However, with Musk announcing that Tesla would soon remove the outright purchase option, it is clearer than ever that the Subscription plan is where the company is headed.

The removal of the outright purchase option has been a polarizing topic among the Tesla community, especially considering that there are many people who are concerned about potential price increases or have been saving to purchase it for $8,000.

This would bring an end to the ability to pay for it once and never have to pay for it again. With the Subscription strategy, things are definitely going to change, and if people are paying for their cars monthly, it will essentially add $100 per month to their payment, pricing some people out. The price will increase as well, as Musk said on Thursday, as it improves in functionality.

Those skeptics have grown concerned that this will actually lower the take rate of Full Self-Driving. While it is understandable that FSD would increase in price as the capabilities improve, there are arguments for a tiered system that would allow owners to pay for features that they appreciate and can afford, which would help with data accumulation for the company.

Musk’s new compensation package also would require Tesla to have 10 million active FSD subscriptions, but people are not sure if this will move the needle in the correct direction. If Tesla can potentially offer a cheaper alternative that is not quite unsupervised, things could improve in terms of the number of owners who pay for it.

Continue Reading

News

Tesla Model S completes first ever FSD Cannonball Run with zero interventions

The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end with no interventions.

Published

on

A Tesla Model S has completed the first-ever full Cannonball Run using Full Self-Driving (FSD), traveling from Los Angeles to New York with zero interventions. The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end, fulfilling a long-discussed benchmark for autonomy.

A full FSD Cannonball Run

As per a report from The Drive, a 2024 Tesla Model S with AI4 and FSD v14.2.2.3 completed the 3,081-mile trip from Redondo Beach in Los Angeles to midtown Manhattan in New York City. The drive was completed by Alex Roy, a former automotive journalist and investor, along with a small team of autonomy experts.

Roy said FSD handled all driving tasks for the entirety of the route, including highway cruising, lane changes, navigation, and adverse weather conditions. The trip took a total of 58 hours and 22 minutes at an average speed of 64 mph, and about 10 hours were spent charging the vehicle. In later comments, Roy noted that he and his team cleaned out the Model S’ cameras during their stops to keep FSD’s performance optimal. 

History made

The historic trip was quite impressive, considering that the journey was in the middle of winter. This meant that FSD didn’t just deal with other cars on the road. The vehicle also had to handle extreme cold, snow, ice, slush, and rain. 

As per Roy in a post on X, FSD performed so well during the trip that the journey would have been completed faster if the Model S did not have people onboard. “Elon Musk was right. Once an autonomous vehicle is mature, most human input is error. A comedy of human errors added hours and hundreds of miles, but FSD stunned us with its consistent and comfortable behavior,” Roy wrote in a post on X.

Roy’s comments are quite notable as he has previously attempted Cannonball Runs using FSD on December 2024 and February 2025. Neither were zero intervention drives.

Continue Reading