News
Rivian patent application hints at 900V fast charging capabilities
A recently published Rivian patent application titled “Configurable Battery Pack for Fast Charge” describes a method of switching between battery pack connection types to allow for both 450V and 900V fast charging without the need for specialized components. The invention was filed in both the US and internationally, and both applications just published today as US Patent Publication No. 2019/0126761 A1 and International Publication No. WO/2019/084507 A1.
Rivian’s application sets out to solve three specific issues with electric vehicle battery charging. First, increases in charging rates typically require more expensive parts that are rated for the higher current requirements. Second, electronic devices operated while a battery is charging may be impacted via increased voltage when a battery’s charging rate is increased. Finally, when a fault occurs in a battery module, a battery system often needs to be completely disconnected from any loads or the charging voltage must be changed.
The basic concept of the application purports to solve the above-referenced problems. As described, the invention claims that battery modules connected in parallel achieve a targeted maximum high voltage for an electric load (such as 450V), but when connected in series that voltage can be doubled (900V). Details of why this is advantageous are explained in the application as follows:
“A configurable battery system allows the techniques of [this invention] to be applied to an electric vehicle…to more fully utilize a battery charger’s potential [where] it is desirable to achieve a particular charging target. For example, a charging target of 150 kW at 450 V may require a current of 334 A…[and] components may need to be sourced to handle up to 400 A continuously to handle the charging….If a battery system were able to take advantage of charging at 900 V, the charging target of 150 kW could be achieved at just 167 A, which may allow for more numerous, better quality, or cheaper options for charging components. For example, a current of 167 A may allow different hardware to be used than if the current were nearer to 400 A.“
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
The application also includes a battery management system to determine which connection should be used at a given point and switch the connection type accordingly. This same management system is also used to detect faults in the system while charging and use the switching capability to handle them accordingly rather than disconnecting any battery loads.
The US application for this invention was filed June 8, 2018 and thus has not yet been examined. However, in the international version, an examiner has already searched for related inventions based on the first 10 claims of Rivian’s application. These claims only describe “a configurable battery system in which connection of two batteries can be switched between a series and a parallel connection”, which is not considered novel on its own.
This kind of finding is not uncommon for applications undergoing the international filing process and will be further addressed once filed in specific countries. Three other inventions were determined to be present in the application which will likely be incorporated with the first ten as the invention’s proceedings continue.

Rivian aims to be the leading expert on battery technology, and patent applications such as this one are a nod towards that innovation goal. The Michigan-based all-electric car maker runs a battery lab in Irvine, California where it has picked up several engineers from renowned supercar brand McLaren. This talent pool includes hypercar engineer Richard Farquhar who is their VP of Propulsion, leading Rivian’s battery and powertrain development.
Currently, each Rivian battery module holds 864 cells, stacked evenly on top of one another, with a thin 7mm aluminum plate with liquid coolant in between. In addition to connection testing, the company uses machine learning to adjust battery cell settings to build predictive models and tune the cells based on situations that may be encountered, such as weather conditions.
Altogether, Rivian’s aim to achieve a level of battery technology that’s reliable and optimal for the electric outdoor adventure branding it has embraced looks to be moving in a promising direction.
News
Tesla Model Y Standard Long Range RWD launches in Europe
The update was announced by Tesla Europe & Middle East in a post on its official social media account on X.
Tesla has expanded the Model Y lineup in Europe with the introduction of the Standard Long Range RWD variant, which offers an impressive 657 km of WLTP range.
The update was announced by Tesla Europe & Middle East in a post on its official social media account on X.
Model Y Standard Long Range RWD Details
Tesla Europe & Middle East highlighted some of the Model Y Standard Long Range RWD’s most notable specs, from its 657 km of WLTP range to its 2,118 liters of cargo volume. More importantly, Tesla also noted that the newly released variant only consumes 12.7 kWh per 100 km, making it the most efficient Model Y to date.
The Model Y Standard provides a lower entry point for consumers who wish to enter the Tesla ecosystem at the lowest possible price. While the Model 3 Standard is still more affordable, some consumers might prefer the Model Y Standard due to its larger size and crossover form factor. The fact that the Model Y Standard is equipped with Tesla’s AI4 computer also makes it ready for FSD’s eventual rollout to the region.
Top Gear’s Model Y Standard review
Top Gear‘s recent review of the Tesla Model Y Standard highlighted some of the vehicle’s most notable features, such as its impressive real-world range, stellar infotainment system, and spacious interior. As per the publication, the Model Y Standard still retains a lot of what makes Tesla’s vehicles well-rounded, even if it’s been equipped with a simplified interior.
Top Gear compared the Model Y Standard to its rivals in the same segment. “The introduction of the Standard trim brings the Model Y in line with the entry price of most of its closest competition. In fact, it’s actually cheaper than a Peugeot e-3008 and costs £5k less than an entry-level Audi Q4 e-tron. It also makes the Ford Mustang Mach-E look a little short with its higher entry price and worse range,” the publication wrote.
Elon Musk
Elon Musk’s xAI bets $20B on Mississippi with 2GW AI data center project
The project is expected to create hundreds of permanent jobs, dramatically expand xAI’s computing capacity, and further cement the Mid-South as a growing hub for AI infrastructure.
Elon Musk’s xAI plans to pour more than $20 billion into a massive new data center campus in Southaven, Mississippi, marking the largest single economic development project in the state’s history.
The project is expected to create hundreds of permanent jobs, dramatically expand xAI’s computing capacity, and further cement the Mid-South as a growing hub for AI infrastructure.
xAI goes MACROHARDRR in Mississippi
xAI has acquired and is retrofitting an existing facility in Southaven to serve as a new data center, which will be known as “MACROHARDRR.” The site sits near a recently acquired power plant and close to one of xAI’s existing data centers in Tennessee, creating a regional cluster designed to support large-scale AI training and inference.
Once completed, the Southaven facility is expected to push the company’s total computing capacity to nearly 2 GW, placing it among the most powerful AI compute installations globally. The data center is scheduled to begin operations in February 2026.
Gov. Tate Reeves shared his optimism about the project in a press release. “This record-shattering $20 billion investment is an amazing start to what is sure to be another incredible year for economic development in Mississippi. Today, Elon Musk is bringing xAI to DeSoto County, a project that will transform the region and bring amazing opportunities to its residents for generations. This is the largest economic development project in Mississippi’s history,” he said.
xAI’s broader AI ambitions
To secure the investment, the Mississippi Development Authority approved xAI for its Data Center Incentive program, which provides sales and use tax exemptions on eligible computing hardware and software. The City of Southaven and DeSoto County are also supporting the project through fee-in-lieu agreements aimed at accelerating development timelines and reducing upfront costs.
Founded in 2023 by Elon Musk, xAI develops advanced artificial intelligence systems focused on large-scale reasoning and generative applications. Its flagship product, Grok, is integrated with the social media platform X, alongside a growing suite of APIs for image generation, voice, and autonomous agents, including offerings tailored for government use.
Elon Musk highlighted xAi’s growth and momentum in a comment about the matter. “xAI is scaling at an immeasurable pace — we are building our third massive data center in the greater Memphis area. MACROHARDRR pushes our Colossus training compute to ~2GW – by far the most powerful AI system on Earth. This is insane execution speed by xAI and the state of Mississippi. We are grateful to Governor Reeves for his support of building xAI at warp speed,” Musk said.
Elon Musk
Tesla AI Head says future FSD feature has already partially shipped
Tesla’s Head of AI, Ashok Elluswamy, says that something that was expected with version 14.3 of the company’s Full Self-Driving platform has already partially shipped with the current build of version 14.2.
Tesla and CEO Elon Musk have teased on several occasions that reasoning will be a big piece of future Full Self-Driving builds, helping bring forth the “sentient” narrative that the company has pushed for these more advanced FSD versions.
Back in October on the Q3 Earnings Call, Musk said:
“With reasoning, it’s literally going to think about which parking spot to pick. It’ll drop you off at the entrance of the store, then go find a parking spot. It’s going to spot empty spots much better than a human. It’s going to use reasoning to solve things.”
Musk said in the same month:
“By v14.3, your car will feel like it is sentient.”
Amazingly, Tesla Full Self-Driving v14.2.2.2, which is the most recent iteration released, is very close to this sentient feeling. However, there are more things that need to be improved, and logic appears to be in the future plans to help with decision-making in general, alongside other refinements and features.
On Thursday evening, Elluswamy revealed that some of the reasoning features have already been rolled out, confirming that it has been added to navigation route changes during construction, as well as with parking options.
He added that “more and more reasoning will ship in Q1.”
🚨 Tesla’s Ashok Elluswamy reveals Nav decisions when encountering construction and parking options contain “some elements of reasoning”
More uses of reasoning will be shipped later this quarter, a big tidbit of info as we wait v14.3 https://t.co/jty8llgsKM
— TESLARATI (@Teslarati) January 9, 2026
Interestingly, parking improvements were hinted at being added in the initial rollout of v14.2 several months ago. These had not rolled out to vehicles quite yet, as they were listed under the future improvements portion of the release notes, but it appears things have already started to make their way to cars in a limited fashion.
Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad
As reasoning is more involved in more of the Full Self-Driving suite, it is likely we will see cars make better decisions in terms of routing and navigation, which is a big complaint of many owners (including me).
Additionally, the operation as a whole should be smoother and more comfortable to owners, which is hard to believe considering how good it is already. Nevertheless, there are absolutely improvements that need to be made before Tesla can introduce completely unsupervised FSD.


