News
Rivian patent application hints at 900V fast charging capabilities
A recently published Rivian patent application titled “Configurable Battery Pack for Fast Charge” describes a method of switching between battery pack connection types to allow for both 450V and 900V fast charging without the need for specialized components. The invention was filed in both the US and internationally, and both applications just published today as US Patent Publication No. 2019/0126761 A1 and International Publication No. WO/2019/084507 A1.
Rivian’s application sets out to solve three specific issues with electric vehicle battery charging. First, increases in charging rates typically require more expensive parts that are rated for the higher current requirements. Second, electronic devices operated while a battery is charging may be impacted via increased voltage when a battery’s charging rate is increased. Finally, when a fault occurs in a battery module, a battery system often needs to be completely disconnected from any loads or the charging voltage must be changed.
The basic concept of the application purports to solve the above-referenced problems. As described, the invention claims that battery modules connected in parallel achieve a targeted maximum high voltage for an electric load (such as 450V), but when connected in series that voltage can be doubled (900V). Details of why this is advantageous are explained in the application as follows:
“A configurable battery system allows the techniques of [this invention] to be applied to an electric vehicle…to more fully utilize a battery charger’s potential [where] it is desirable to achieve a particular charging target. For example, a charging target of 150 kW at 450 V may require a current of 334 A…[and] components may need to be sourced to handle up to 400 A continuously to handle the charging….If a battery system were able to take advantage of charging at 900 V, the charging target of 150 kW could be achieved at just 167 A, which may allow for more numerous, better quality, or cheaper options for charging components. For example, a current of 167 A may allow different hardware to be used than if the current were nearer to 400 A.“
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
The application also includes a battery management system to determine which connection should be used at a given point and switch the connection type accordingly. This same management system is also used to detect faults in the system while charging and use the switching capability to handle them accordingly rather than disconnecting any battery loads.
The US application for this invention was filed June 8, 2018 and thus has not yet been examined. However, in the international version, an examiner has already searched for related inventions based on the first 10 claims of Rivian’s application. These claims only describe “a configurable battery system in which connection of two batteries can be switched between a series and a parallel connection”, which is not considered novel on its own.
This kind of finding is not uncommon for applications undergoing the international filing process and will be further addressed once filed in specific countries. Three other inventions were determined to be present in the application which will likely be incorporated with the first ten as the invention’s proceedings continue.

Rivian aims to be the leading expert on battery technology, and patent applications such as this one are a nod towards that innovation goal. The Michigan-based all-electric car maker runs a battery lab in Irvine, California where it has picked up several engineers from renowned supercar brand McLaren. This talent pool includes hypercar engineer Richard Farquhar who is their VP of Propulsion, leading Rivian’s battery and powertrain development.
Currently, each Rivian battery module holds 864 cells, stacked evenly on top of one another, with a thin 7mm aluminum plate with liquid coolant in between. In addition to connection testing, the company uses machine learning to adjust battery cell settings to build predictive models and tune the cells based on situations that may be encountered, such as weather conditions.
Altogether, Rivian’s aim to achieve a level of battery technology that’s reliable and optimal for the electric outdoor adventure branding it has embraced looks to be moving in a promising direction.
News
Tesla opens Robotaxi access to everyone — but there’s one catch
Tesla has officially opened Robotaxi access to everyone and everyone, but there is one catch: you have to have an iPhone.
Tesla’s Robotaxi service in Austin and its ride-hailing service in the Bay Area were both officially launched to the public today, giving anyone using the iOS platform the ability to simply download the app and utilize it for a ride in either of those locations.
It has been in operation for several months: it launched in Austin in late June and in the Bay Area about a month later. In Austin, there is nobody in the driver’s seat unless the route takes you on the freeway.
In the Bay Area, there is someone in the driver’s seat at all times.
The platform was initially launched to those who were specifically invited to Austin to try it out.
Tesla confirms Robotaxi is heading to five new cities in the U.S.
Slowly, Tesla launched the platform to more people, hoping to expand the number of rides and get more valuable data on its performance in both regions to help local regulatory agencies relax some of the constraints that were placed on it.
Additionally, Tesla had its own in-house restrictions, like the presence of Safety Monitors in the vehicles. However, CEO Elon Musk has maintained that these monitors were present for safety reasons specifically, but revealed the plan was to remove them by the end of the year.
Now, Tesla is opening up Robotaxi to anyone who wants to try it, as many people reported today that they were able to access the app and immediately fetch a ride if they were in the area.
We also confirmed it ourselves, as it was shown that we could grab a ride in the Bay Area if we wanted to:
🚨 Tesla Robotaxi ride-hailing Service in Austin and the Bay Area has opened up for anyone on iOS
Go download the app and, if you’re in the area, hail a ride from Robotaxi pic.twitter.com/1CgzG0xk1J
— TESLARATI (@Teslarati) November 18, 2025
The launch of a more public Robotaxi network that allows anyone to access it seems to be a serious move of confidence by Tesla, as it is no longer confining the service to influencers who are handpicked by the company.
In the coming weeks, we expect Tesla to then rid these vehicles of the Safety Monitors as Musk predicted. If it can come through on that by the end of the year, the six-month period where Tesla went from launching Robotaxi to enabling driverless rides is incredibly impressive.
News
Tesla analyst sees Full Self-Driving adoption rates skyrocketing: here’s why
“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”
Tesla analyst Stephen Gengaro of Stifel sees Full Self-Driving adoption rates skyrocketing, and he believes more and more people will commit to paying for the full suite or the subscription service after they try it.
Full Self-Driving is Tesla’s Level 2 advanced driver assistance suite (ADAS), and is one of the most robust on the market. Over time, the suite gets better as the company accumulates data from every mile driven by its fleet of vehicles, which has swelled to over five million cars sold.
The suite features a variety of advanced driving techniques that many others cannot do. It is not your typical Traffic-Aware Cruise Control (TACC) and Lane Keeping ADAS system. Instead, it can handle nearly every possible driving scenario out there.
It still requires the driver to pay attention and ultimately assume responsibility for the vehicle, but their hands are not required to be on the steering wheel.
It is overwhelmingly impressive, and as a personal user of the FSD suite on a daily basis, I have my complaints, but overall, there are very few things it does incorrectly.
Tesla Full Self-Driving (Supervised) v14.1.7 real-world drive and review
Gengaro, who increased his Tesla price target to $508 yesterday, said in an interview with CNBC that adoption rates of FSD will increase over the coming years as more people try it for themselves.
At first, it is tough to feel comfortable with your car literally driving you around. Then, it becomes second nature.
Gengaro said:
“You’ll see increased adoption as people are exposed to it. I’ve been behind the wheel of several of these and the different iterations of FSD, and it is getting better and better. It’s something when people experience it, they will be much more comfortable utilizing FSD and paying for it.”
Tesla Full Self-Driving take rates also have to increase as part of CEO Elon Musk’s recently approved compensation package, as one tranche requires ten million active subscriptions in order to win that portion of the package.
The company also said in the Q3 2025 Earnings Call in October that only 12 percent of the current ownership fleet are paid customers of Full Self-Driving, something the company wants to increase considerably moving forward.
News
Tesla scores major court win as judge rejects race bias class action
The ruling means the 2017 lawsuit cannot proceed as a class action because plaintiff attorneys were unable to secure testimony commitments from at least 200 workers.
Tesla scored a significant legal victory in California after a state judge reversed a class certification in a high-profile race harassment case involving 6,000 Black workers at its Fremont plant. The ruling means the 2017 lawsuit cannot proceed as a class action because plaintiff attorneys were unable to secure testimony commitments from at least 200 workers ahead of a 2026 trial, a threshold the judge viewed as necessary to reliably represent the full group.
No class action
In a late-Friday order, California Superior Court Judge Peter Borkon concluded that the suit could not remain a class action, stating he could not confidently apply the experiences of a much smaller group of testifying workers to thousands of potential class members. His ruling reverses a 2024 decision by a different judge who had certified the case under the belief that a trial of that size would be manageable, as noted in a Reuters report.
The lawsuit was originally filed by former assembly-line worker Marcus Vaughn, who alleged that Black employees at Tesla’s Fremont factory were exposed to various forms of racially hostile conduct, including slurs, graffiti, and instances of disturbing objects appearing in work areas. Tesla has previously said it does not tolerate harassment and has removed employees found responsible for misconduct. Neither Tesla nor the plaintiffs’ legal team immediately commented on the latest ruling.
Tesla’s legal challenges
While the decertification narrows the scope of this particular case, Tesla still faces additional litigation over similar allegations. A separate trial involving related claims brought by a California state civil rights agency is scheduled just two months after the now-vacated class trial date. The company is also contending with federal race discrimination claims filed by the U.S. Equal Employment Opportunity Commission, alongside several individual lawsuits it has already resolved.
For now, the reversal removes the large-scale exposure Tesla would have faced in a unified class trial, shifting the dispute back to individual claims rather than a single mass action. The case is Vaughn v. Tesla, filed in Alameda County Superior Court.


