News
Rivian patent application hints at 900V fast charging capabilities
A recently published Rivian patent application titled “Configurable Battery Pack for Fast Charge” describes a method of switching between battery pack connection types to allow for both 450V and 900V fast charging without the need for specialized components. The invention was filed in both the US and internationally, and both applications just published today as US Patent Publication No. 2019/0126761 A1 and International Publication No. WO/2019/084507 A1.
Rivian’s application sets out to solve three specific issues with electric vehicle battery charging. First, increases in charging rates typically require more expensive parts that are rated for the higher current requirements. Second, electronic devices operated while a battery is charging may be impacted via increased voltage when a battery’s charging rate is increased. Finally, when a fault occurs in a battery module, a battery system often needs to be completely disconnected from any loads or the charging voltage must be changed.
The basic concept of the application purports to solve the above-referenced problems. As described, the invention claims that battery modules connected in parallel achieve a targeted maximum high voltage for an electric load (such as 450V), but when connected in series that voltage can be doubled (900V). Details of why this is advantageous are explained in the application as follows:
“A configurable battery system allows the techniques of [this invention] to be applied to an electric vehicle…to more fully utilize a battery charger’s potential [where] it is desirable to achieve a particular charging target. For example, a charging target of 150 kW at 450 V may require a current of 334 A…[and] components may need to be sourced to handle up to 400 A continuously to handle the charging….If a battery system were able to take advantage of charging at 900 V, the charging target of 150 kW could be achieved at just 167 A, which may allow for more numerous, better quality, or cheaper options for charging components. For example, a current of 167 A may allow different hardware to be used than if the current were nearer to 400 A.“
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
- Figure from Rivian’s battery connection switching patent application. | Image: Rivian/USPTO
The application also includes a battery management system to determine which connection should be used at a given point and switch the connection type accordingly. This same management system is also used to detect faults in the system while charging and use the switching capability to handle them accordingly rather than disconnecting any battery loads.
The US application for this invention was filed June 8, 2018 and thus has not yet been examined. However, in the international version, an examiner has already searched for related inventions based on the first 10 claims of Rivian’s application. These claims only describe “a configurable battery system in which connection of two batteries can be switched between a series and a parallel connection”, which is not considered novel on its own.
This kind of finding is not uncommon for applications undergoing the international filing process and will be further addressed once filed in specific countries. Three other inventions were determined to be present in the application which will likely be incorporated with the first ten as the invention’s proceedings continue.

Rivian aims to be the leading expert on battery technology, and patent applications such as this one are a nod towards that innovation goal. The Michigan-based all-electric car maker runs a battery lab in Irvine, California where it has picked up several engineers from renowned supercar brand McLaren. This talent pool includes hypercar engineer Richard Farquhar who is their VP of Propulsion, leading Rivian’s battery and powertrain development.
Currently, each Rivian battery module holds 864 cells, stacked evenly on top of one another, with a thin 7mm aluminum plate with liquid coolant in between. In addition to connection testing, the company uses machine learning to adjust battery cell settings to build predictive models and tune the cells based on situations that may be encountered, such as weather conditions.
Altogether, Rivian’s aim to achieve a level of battery technology that’s reliable and optimal for the electric outdoor adventure branding it has embraced looks to be moving in a promising direction.
Elon Musk
Tesla bull sees odds rising of Tesla merger after Musk confirms SpaceX-xAI deal
Dan Ives of Wedbush Securities wrote on Tuesday that there is a growing chance Tesla could be merged in some form with SpaceX and xAI over the next 12 to 18 months.
A prominent Tesla (NASDAQ:TSLA) bull has stated that the odds are rising that Tesla could eventually merge with SpaceX and xAI, following Elon Musk’s confirmation that the private space company has combined with his artificial intelligence startup.
Dan Ives of Wedbush Securities wrote on Tuesday that there is a growing chance Tesla could be merged in some form with SpaceX and xAI over the next 12 to 18 months.
“In our view there is a growing chance that Tesla will eventually be merged in some form into SpaceX/xAI over time. The view is this growing AI ecosystem will focus on Space and Earth together…..and Musk will look to combine forces,” Ives wrote in a post on X.
Ives’ comments followed confirmation from Elon Musk late Monday that SpaceX has merged with xAI. Musk stated that the merger creates a vertically integrated platform that combines AI, rockets, satellite internet, communications, and real-time data.
In a post on SpaceX’s official website, Elon Musk added that the combined company is aimed at enabling space-based AI compute, stating that within two to three years, space could become the lowest-cost environment for generating AI processing power. The transaction reportedly values the combined SpaceX-xAI entity at roughly $1.25 trillion.
Tesla, for its part, has already increased its exposure to xAI, announcing a $2 billion investment in the startup last week in its Q4 and FY 2025 update letter.
While merger speculation has intensified, notable complications could emerge if SpaceX/xAI does merge with Tesla, as noted in a report from Investors Business Daily.
SpaceX holds major U.S. government contracts, including with the Department of Defense and NASA, and xAI’s Grok is being used by the U.S. Department of War. Tesla, for its part, maintains extensive operations in China through Gigafactory Shanghai and its Megapack facility.
Elon Musk
Elon Musk and xAI donate generators to TN amid historic power outages
The donation comes as thousands of households have gone days without electricity amid freezing temperatures.
Elon Musk has donated hundreds of generators to Tennessee residents still without power following a historic winter storm, as per an update from Governor Bill Lee.
The donation comes as thousands of households have gone days without electricity amid freezing temperatures.
Musk donates generators
As noted in a report from WSMV4, the historic storm that hit Tennessee resulted in hundreds of thousands of residents experiencing a power outage at the end of January. Thousands are still living without power or heat in freezing temperatures for up to nine days.
As per TN Gov. Bill Lee in a post on X, Elon Musk and xAI have donated hundreds of generators to assist residents in affected areas. “Tennesseans without power need immediate help. I’m deeply grateful to @elonmusk & @xAI for going above & beyond to support Tennesseans by donating hundreds of generators to fill the gap, & I value their continued partnership to solve problems & support communities across our state,” he wrote in his post.
Tennessee officials have stated that recovery efforts remain ongoing as crews work to restore power and address damage caused by the winter storm. The generators are expected to provide temporary relief for residents facing power outages during freezing conditions.
Tesla Powerwalls may follow
Musk publicly responded to the governor’s post while hinting that additional help may be on the way. This time, the additional support would be coming from Musk’s electric vehicle company, Tesla.
“You’re most welcome. We’re working on providing Tesla Powerwalls too,” Musk wrote in his response to the official.
Even before Elon Musk’s comment, Tesla had already extended help to affected customers in Mississippi and Tennessee. In a post on X, the official Tesla Charging account noted that all Superchargers in the two states are online, and free Supercharging has been enabled to help those in areas that are affected by persistent power outages.
These include Grenada, Tupelo, Corinth, Southhaven, and Horn Lake in Mississippi and several Supercharging sites in Memphis, Tennessee.
News
Tesla-inspired door handles prohibited under China’s new safety standard
The rule effectively ends a design trend pioneered by Tesla and widely adopted across China’s electric vehicle market.
China will ban hidden door handles on electric vehicles starting 2027 under a new national safety standard, forcing automakers to equip their cars with mechanical exterior and interior handles.
The rule effectively ends a design trend pioneered by Tesla and widely adopted across China’s electric vehicle market.
China bans hidden door handles
China’s Ministry of Industry and Information Technology (MIIT) noted that the new mandatory national auto safety standard on EV door handles will take effect on January 1, 2027. For models that have already received approval and are scheduled for launch, automakers will be allowed to complete required design changes by January 2029.
Under the new rules, exterior door handles must remain operable even in scenarios involving irreversible restraint system failures or thermal runaway incidents in the battery pack. Doors must also be capable of opening even if the vehicle loses electrical power. Interior doors must include at least one independent mechanical release handle per door as well.
Safety concerns drive rollback
Hidden and electrically actuated door handles have become mainstream in recent years as EV makers pursued cleaner styling and improved aerodynamics. Tesla pioneered the hidden handle design, and it was adopted by most Chinese EV manufacturers in either fully hidden or semi-hidden forms, as noted in a CNEV Post report. Today, about 60% of top-selling EVs in China use the design.
Chinese regulators have stated that the designs pose safety risks, particularly in crashes or power failures where doors may not open from the inside or outside. Authorities cited multiple fatal incidents in which occupants or rescuers were unable to open vehicle doors after collisions.
One high-profile case occurred last October, when a Xiaomi SU7, a vehicle designed to be a competitor to the Tesla Model 3, caught fire following a crash in Chengdu in southwest China. The driver died after bystanders were unable to open the doors. The incident sparked intense scrutiny over the SU7’s Tesla-inspired door handles.


