Connect with us

News

DeepSpace: Rocket Lab nails third Electron launch of 2019 as next rocket heads to launch pad

Rocket Lab's Electron rocket lifts off from Mahia Peninsula on June 29th for the company's third launch of 2019. (Rocket Lab)

Published

on

Welcome to the latest edition of DeepSpace! Each week, I’ll hand-craft this newsletter to give you a breakdown of what’s happening in the space industry and tell you what you need to know. 

On June 29th, startup Rocket Lab completed its third successful Electron rocket launch this year, placing roughly half a dozen small(ish) satellites in orbit as part of a dedicated mission for Seattle-based startup Spaceflight Industries.

Technically speaking, with three launches under its belt, Rocket Lab has now reached orbit more times this year than the United Launch Alliance’s (ULA) Atlas V and Delta IV rockets combined, despite the fact that the company conducted its first commercial launch just seven months ago. In other words, Rocket Lab is finding its stride with Electron at an unprecedented speed and may be able to complete its tenth successful orbital launch less than two years after the company first reached orbit (January 2018). June 29th’s launch is just the latest in a string of impressive successes for Rocket Lab and the company doesn’t appear to be slowing down any time soon.



Electron Flight 7: “Make It Rain”

  • A tongue-in-cheek reference to the stereotype that it rains constantly in Seattle, home of launch contractor Spaceflight Industries, Electron Flight 7 was a commercial rideshare mission that included six publicly manifested satellites and at least one classified payload.
    • Altogether, the payload mass was reported by Rocket Lab to be roughly 80 kg (175 lb). Aside from marking the orbital debut of Australia’s Melbourne Space Program, Flight 7’s main passenger – manifested via SpaceX – was BlackSky’s ~56 kg (125 lb), dishwasher-sized Global 3 satellite, the third of its kind to reach orbit.
    • BlackSky’s ultimate goal is to build a full constellation of at least 60 Global satellites, each capable of delivering >1000 images with an impressive resolution of ~1m/pixel. The first four (including Global 3) were actually built by Spaceflight itself, but the 60-satellite constellation is to be produced at LeoStella’s recently-inaugurated Seattle factory and replaced every few years.
 

Attached above black, rectangular cubesat dispensers is BlackSky’s minifridge-sized Global 3 satellite (top), encapsulated inside Electron’s carbon fiber fairing soon after (left). Electron lifted off (right) on June 28th (June 29th local time) and was greeted by a spectacular sunset-lit view of its launch site, located on New Zealand’s Mahia Peninsula. (Rocket Lab)

  • It can be all but guaranteed that BlackSky (or LeoStella) will return to Rocket Lab for future Global satellite launch contracts, perhaps flying 2-3 spacecraft at a time to expedite constellation completion and lower the overall cost of getting it into orbit.
  • Carrying a price tag of roughly $6M, Electron is capable of placing 150 kg (330 lb) into a 500 km (310 mi) sun-synchronous orbit (SSO). 3 Global satellites would likely push Electron to its limits, while 2 would leave plenty of space for additional copassenger spacecraft and thus opportunities to lower the overall cost to BlackSky.
  • Some 50 minutes after lifting off from New Zealand, Electron’s third stage – a “kick stage” powered by a custom-built Curie engine – ignited and burned for about 45 seconds, circularizing its orbit. A few minutes later, all 6-7+ spacecraft were successfully deployed, leaving the kick stage to once again lower its orbit to facilitate a quick and controlled reentry, minimizing space debris.

Onto the next one

  • Pictured at the bottom of the gallery above, Rocket Lab – much like SpaceX – completed a full static fire test of Flight 8’s Electron upper stage, the last major test milestone standing in the way of Electron’s next launch. Located in Auckland, NZ, the upper stage will now be shipped around 300 mi (500 km) south to Rocket Lab’s Mahia Peninsula-based Launch Complex 1 (LC-1).
  • According to Rocket Lab’s website, Electron Flight 8 is scheduled no earlier than (NET) August 2019, although the company’s Flight 7 webcast host indicated that it could happen as early as July.
    • Either way, it appears that Rocket Lab is well on its way to achieving a bimonthly average launch cadence this year.
    • The company’s goal is to reach a monthly launch cadence by the end of the year, roughly halving its current 2019 average of ~50 days between launches.
  • Ultimately, Rocket Lab’s future continues to look brighter month by month. As the only commercial smallsat launch operator currently serving customers, the company is essentially early to the party and has the market cornered by simply being first. Every launch will provide experience and get the company closer to profitability and even greater launch cadences, perhaps as high as 2-3x per month by the end of 2020.
Thanks for being a Teslarati ReaderBecome a member today to receive an issue of DeepSpace in your inbox every Tuesday.

– Eric

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading