Connect with us

News

DeepSpace: Rocket Lab nails third Electron launch of 2019 as next rocket heads to launch pad

Rocket Lab's Electron rocket lifts off from Mahia Peninsula on June 29th for the company's third launch of 2019. (Rocket Lab)

Published

on

Welcome to the latest edition of DeepSpace! Each week, I’ll hand-craft this newsletter to give you a breakdown of what’s happening in the space industry and tell you what you need to know. 

On June 29th, startup Rocket Lab completed its third successful Electron rocket launch this year, placing roughly half a dozen small(ish) satellites in orbit as part of a dedicated mission for Seattle-based startup Spaceflight Industries.

Technically speaking, with three launches under its belt, Rocket Lab has now reached orbit more times this year than the United Launch Alliance’s (ULA) Atlas V and Delta IV rockets combined, despite the fact that the company conducted its first commercial launch just seven months ago. In other words, Rocket Lab is finding its stride with Electron at an unprecedented speed and may be able to complete its tenth successful orbital launch less than two years after the company first reached orbit (January 2018). June 29th’s launch is just the latest in a string of impressive successes for Rocket Lab and the company doesn’t appear to be slowing down any time soon.



Electron Flight 7: “Make It Rain”

  • A tongue-in-cheek reference to the stereotype that it rains constantly in Seattle, home of launch contractor Spaceflight Industries, Electron Flight 7 was a commercial rideshare mission that included six publicly manifested satellites and at least one classified payload.
    • Altogether, the payload mass was reported by Rocket Lab to be roughly 80 kg (175 lb). Aside from marking the orbital debut of Australia’s Melbourne Space Program, Flight 7’s main passenger – manifested via SpaceX – was BlackSky’s ~56 kg (125 lb), dishwasher-sized Global 3 satellite, the third of its kind to reach orbit.
    • BlackSky’s ultimate goal is to build a full constellation of at least 60 Global satellites, each capable of delivering >1000 images with an impressive resolution of ~1m/pixel. The first four (including Global 3) were actually built by Spaceflight itself, but the 60-satellite constellation is to be produced at LeoStella’s recently-inaugurated Seattle factory and replaced every few years.
 

Attached above black, rectangular cubesat dispensers is BlackSky’s minifridge-sized Global 3 satellite (top), encapsulated inside Electron’s carbon fiber fairing soon after (left). Electron lifted off (right) on June 28th (June 29th local time) and was greeted by a spectacular sunset-lit view of its launch site, located on New Zealand’s Mahia Peninsula. (Rocket Lab)

  • It can be all but guaranteed that BlackSky (or LeoStella) will return to Rocket Lab for future Global satellite launch contracts, perhaps flying 2-3 spacecraft at a time to expedite constellation completion and lower the overall cost of getting it into orbit.
  • Carrying a price tag of roughly $6M, Electron is capable of placing 150 kg (330 lb) into a 500 km (310 mi) sun-synchronous orbit (SSO). 3 Global satellites would likely push Electron to its limits, while 2 would leave plenty of space for additional copassenger spacecraft and thus opportunities to lower the overall cost to BlackSky.
  • Some 50 minutes after lifting off from New Zealand, Electron’s third stage – a “kick stage” powered by a custom-built Curie engine – ignited and burned for about 45 seconds, circularizing its orbit. A few minutes later, all 6-7+ spacecraft were successfully deployed, leaving the kick stage to once again lower its orbit to facilitate a quick and controlled reentry, minimizing space debris.

Onto the next one

  • Pictured at the bottom of the gallery above, Rocket Lab – much like SpaceX – completed a full static fire test of Flight 8’s Electron upper stage, the last major test milestone standing in the way of Electron’s next launch. Located in Auckland, NZ, the upper stage will now be shipped around 300 mi (500 km) south to Rocket Lab’s Mahia Peninsula-based Launch Complex 1 (LC-1).
  • According to Rocket Lab’s website, Electron Flight 8 is scheduled no earlier than (NET) August 2019, although the company’s Flight 7 webcast host indicated that it could happen as early as July.
    • Either way, it appears that Rocket Lab is well on its way to achieving a bimonthly average launch cadence this year.
    • The company’s goal is to reach a monthly launch cadence by the end of the year, roughly halving its current 2019 average of ~50 days between launches.
  • Ultimately, Rocket Lab’s future continues to look brighter month by month. As the only commercial smallsat launch operator currently serving customers, the company is essentially early to the party and has the market cornered by simply being first. Every launch will provide experience and get the company closer to profitability and even greater launch cadences, perhaps as high as 2-3x per month by the end of 2020.
Thanks for being a Teslarati ReaderBecome a member today to receive an issue of DeepSpace in your inbox every Tuesday.

– Eric

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading