News
Rocket Lab spacecraft sends NASA’s CAPSTONE mission to the Moon
Rocket Lab has successfully sent a small NASA spacecraft on its way to the Moon, acing the complex interplanetary launch on its first try.
The public aerospace company’s (mostly) standard two-stage Electron rocket lifted from its New Zealand-based LC-1 pad on June 28th and inserted NASA’s tiny 25-kilogram (~55 lb) “Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment” (CAPSTONE) spacecraft into a low Earth parking orbit without issue. As is fairly typical for most modern Electron launches, a small ‘kick stage’ was included for orbital operations and payload deployment, but CAPSTONE’s kick stage and destination were anything but typical.
Instead of slightly and briefly tweaking a run-of-the-mill low Earth orbit, CAPSTONE’s kick stage was tasked with sending the spacecraft (and itself) all the way from LEO (~300 kilometers) to a lunar transfer orbit with an apoapsis 1.2 million kilometers (~750,000 mi) from Earth.
To accomplish that feat, Electron’s extensively upgraded Lunar Photon kick stage would need to perform more than half a dozen major burns spread out over almost a week, and survive hostile conditions while maintaining total control throughout. Generally speaking, Rocket Lab offers three kick stage variants: a standard low-thrust, low-longevity stage for small orbital adjustments shortly after launch; an upgraded Photon that can either serve as a long-lived satellite or kick stage; and an even more upgraded Photon with large propellant tanks and a more powerful ‘HyperCurie’ engine. With an impressive 3200+ meters per second of delta V, the latter variant could boost significant payloads into higher Earth orbits but is primarily designed for deep space missions – sending payloads beyond Earth orbit.
Rocket Lab wants to launch its own self-funded mission(s) to Venus, delivering one or several small atmospheric probes to help peel back the curtain on the chronically under-explored planet. It also won a 2021 contract to supply a pair of Mars-bound Photon spacecraft buses for NASA’s Escape and Plasma Acceleration and Dynamics Explorers (ESCAPADE) in 2024, and has multiple orders for simpler Photons that will support slightly more ordinary missions back in Earth orbit.

Lunar Photon’s performance on CAPSTONE bodes extremely well for those ambitious future plans. Within hours of reaching orbit, Photon had begun the orbit-raising process. Over the course of five days, Photon performed six major burns, effectively taking larger and larger ‘steps’ towards the Moon. The spacecraft’s seventh and final burn boosted its apoapsis almost tenfold from ~70,000 to 1.2 million kilometers from Earth, officially placing CAPSTONE on a ballistic lunar trajectory (BLT). While highly efficient, CAPSTONE’s trajectory means it will have to wait until November 2022 to truly enter orbit around the Moon using its own small thrusters.
Once there, “CAPSTONE will help reduce risk for future spacecraft by validating innovative navigation technologies and verifying the dynamics of” lunar near-rectilinear halo orbits (NRHO). The story behind that strange lunar orbit – which will make exploring the Moon’s surface significantly less convenient – is far less glamorous, however. CAPSTONE is essentially a tiny precursor to NASA’s Artemis Program, which the agency claims will help “establish the first long-term presence on the Moon.”
In reality, NASA’s concrete plans currently include a series of short and temporary human landings in the 2020s. While the agency has contracted with SpaceX to develop a potentially revolutionary Starship Moon lander for a single uncrewed and crewed demonstration mission, NASA’s current plan involves using its own Space Launch System (SLS) rocket and Orion spacecraft as a sort of $4 billion lunar taxi to carry astronauts from Earth’s surface to a Starship lander waiting in lunar orbit. Starship will then carry those astronauts to the surface, spend about a week on the ground, launch them back into lunar orbit, and rendezvous with Orion, which will finally return them to Earth.


Orion’s service module delivers about half as much delta V as NASA’s 50-year-old Apollo Service Module, severely limiting its deep space utility and making safe crewed trips to and from low lunar orbits virtually impossible on its own. Instead of improving the spacecraft’s performance and flexibility by upgrading or replacing the European-built service module (ESM) over the last decade, NASA accepted that Orion would only ever be able to send astronauts to lunar orbits that would always be inconvenient for surface operations.
CAPSTONE’s ultimate purpose, then, is to make sure that spacecraft operate as expected in that compromise orbit – only necessary because Orion can’t reach the lower lunar orbits that are already thoroughly understood.
News
Man credits Grok AI with saving his life after ER missed near-ruptured appendix
The AI flagged some of the man’s symptoms and urged him to return to the ER immediately and demand a CT scan.
A 49-year-old man has stated that xAI’s Grok ended up saving his life when the large language model identified a near-ruptured appendix that his first ER visit dismissed as acid reflux.
After being sent home from the ER, the man asked Grok to analyze his symptoms. The AI flagged some of the man’s symptoms and urged him to return immediately and demand a CT scan. The scan confirmed that something far worse than acid reflux was indeed going on.
Grok spotted what a doctor missed
In a post on Reddit, u/Tykjen noted that for 24 hours straight, he had a constant “razor-blade-level” abdominal pain that forced him into a fetal position. He had no fever or visible signs. He went to the ER, where a doctor pressed his soft belly, prescribed acid blockers, and sent him home.
The acid blockers didn’t work, and the man’s pain remained intense. He then decided to open a year-long chat he had with Grok and listed every detail that he was experiencing. The AI responded quickly. “Grok immediately flagged perforated ulcer or atypical appendicitis, told me the exact red-flag pattern I was describing, and basically said “go back right now and ask for a CT,” the man wrote in his post.
He copied Grok’s reasoning, returned to the ER, and insisted on the scan. The CT scan ultimately showed an inflamed appendix on the verge of rupture. Six hours later, the appendix was out. The man said the pain has completely vanished, and he woke up laughing under anesthesia. He was discharged the next day.
How a late-night conversation with Grok got me to demand the CT scan that saved my life from a ruptured appendix (December 2025)
byu/Tykjen ingrok
AI doctors could very well be welcomed
In the replies to his Reddit post, u/Tykjen further explained that he specifically avoided telling doctors that Grok, an AI, suggested he get a CT scan. “I did not tell them on the second visit that Grok recommended the CT scan. I had to lie. I told them my sister who’s a nurse told me to ask for the scan,” the man wrote.
One commenter noted that the use of AI in medicine will likely be welcomed, stating that “If AI could take doctors’ jobs one day, I will be happy. Doctors just don’t care anymore. It’s all a paycheck.” The Redditor replied with, “Sadly yes. That is what it felt like after the first visit. And the following night could have been my last.”
Elon Musk has been very optimistic about the potential of robots like Tesla Optimus in the medical field. Provided that they are able to achieve human-level articulation in their hands, and Tesla is able to bring down their cost through mass manufacturing, the era of AI-powered medical care could very well be closer than expected.
News
Tesla expands Model 3 lineup in Europe with most affordable variant yet
The Model 3 Standard still delivers more than 300 miles of range, potentially making it an attractive option for budget-conscious buyers.
Tesla has introduced a lower-priced Model 3 variant in Europe, expanding the lineup just two months after the vehicle’s U.S. debut. The Model 3 Standard still delivers more than 300 miles (480 km) of range, potentially making it an attractive option for budget-conscious buyers.
Tesla’s pricing strategy
The Model 3 Standard arrives as Tesla contends with declining registrations in several countries across Europe, where sales have not fully offset shifting consumer preferences. Many buyers have turned to options such as Volkswagen’s ID.3 and BYD’s Atto 3, both of which have benefited from aggressive pricing.
By removing select premium finishes and features, Tesla positioned the new Model 3 Standard as an “ultra-low cost of ownership” option of its all-electric sedan. Pricing comes in at €37,970 in Germany, NOK 330,056 in Norway, and SEK 449,990 in Sweden, depending on market. This places the Model 3 Standard well below the “premium” Model 3 trim, which starts at €45,970 in Germany.
Deliveries for the Standard model are expected to begin in the first quarter of 2026, giving Tesla an entry-level foothold in a segment that’s increasingly defined by sub-€40,000 offerings.
Tesla’s affordable vehicle push
The low-cost Model 3 follows October’s launch of a similarly positioned Model Y variant, signaling a broader shift in Tesla’s product strategy. While CEO Elon Musk has moved the company toward AI-driven initiatives such as robotaxis and humanoid robots, lower-priced vehicles remain necessary to support the company’s revenue in the near term.
Reports have indicated that Tesla previously abandoned plans for an all-new $25,000 EV, with the company opting to create cheaper versions of existing platforms instead. Analysts have flagged possible cannibalization of higher-margin models, but the move aims to counter an influx of aggressively priced entrants from China and Europe, many of which sell below $30,000. With the new Model 3 Standard, Tesla is reinforcing its volume strategy in Europe’s increasingly competitive EV landscape.
News
Tesla FSD (Supervised) stuns Germany’s biggest car magazine
FSD Supervised recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets.
Tesla’s upcoming FSD Supervised system, set for a European debut pending regulatory approval, is showing notably refined behavior in real-world testing, including construction zones, pedestrian detection, and lane changes, as per a recent demonstration ride in Berlin.
While the system still required driver oversight, its smooth braking, steering, and decision-making illustrated how far Tesla’s driver-assistance technology has advanced ahead of a potential 2026 rollout.
FSD’s maturity in dense city driving
During the Berlin test ride with Auto Bild, Germany’s largest automotive publication, a Tesla Model 3 running FSD handled complex traffic with minimal intervention, autonomously managing braking, acceleration, steering, and overtaking up to 140 km/h. It recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets.
Only one manual override was required when the system misread a converted one-way route, an example, Tesla stated, of the continuous learning baked into its vision-based architecture.
Robin Hornig of Auto Bild summed up his experience with FSD Supervised with a glowing review of the system. As per the reporter, FSD Supervised already exceeds humans with its all-around vision. “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention,” the journalist wrote.
Tesla FSD in Europe
FSD Supervised is still a driver-assistance system rather than autonomous driving. Still, Auto Bild noted that Tesla’s 360-degree camera suite, constant monitoring, and high computing power mark a sizable leap from earlier iterations. Already active in the U.S., China, and several other regions, the system is currently navigating Europe’s approval pipeline. Tesla has applied for an exemption in the Netherlands, aiming to launch the feature through a free software update as early as February 2026.
What Tesla demonstrated in Berlin mirrors capabilities already common in China and the U.S., where rival automakers have rolled out hands-free or city-navigation systems. Europe, however, remains behind due to a stricter certification environment, though Tesla is currently hard at work pushing for FSD Supervised’s approval in several countries in the region.