News
Solid State Battery Technology, a Tesla Gigafactory Killer?
With 2014 coming to an end, automotive battery news has been trickling out and solid state battery technology appears, again.
In early December, Volkswagen acquired a small equity stake in Stanford-based QuantumScape and Daimler recently announced that its lithium production output will be larger in 2015 due to a new battery plant in Kamenz, Germany, said to be ready by mid-2015.
The VW news keeps the the solid state battery thread for 2014 going as scientists point to its reported improved energy density over lithium-ion technology. A solid state battery does not use a liquid electrolyte like a lithium battery does and, in theory, a solid electrolyte can hold more energy. Yes, please.
Getting rid of an electrolyte—no liquid—can also improve battery safety and reduce costs due to less cooling electronics and micro-controllers needed for pack management, thus reducing weight too, according to Harvard Business Review.
What about downsides to this technology? A solid-state battery has electrical contacts or, electrodes, that are applied to a solid electrolyte—similar to a thin-film solar panel process—and if there’s a lack of uniformity in this process, it can cause short circuits. However, this type of manufacturing application has been done in the thin-film solar area and these obstacles should be easy to overcome.
Earlier this year, Scientific American did a profile on Ann Arbor, Michigan-based Sakti3 and their push with solid-state battery technology and move closer to the “god” battery.
Ann Marie Sastry, co-founder and CEO of the company, said, “that the company’s prototype solid-state lithium battery cells have reached a record energy density of 1,143 Watt-hours per liter—more than double the energy density of today’s best lithium-ion batteries.”
However, as Elon Musk said in the most recent Tesla earnings call,
“Talk is super cheap, the battery industry has to have more BS in it than any industry I’ve ever encountered. It’s insane.”
So is this technology an immediate challenger to Tesla Motors’ Gigafactory strategy? Will this battery technology get ahead of Tesla, due its battery equipment investment at the Gigafactory being close to complete and, thus, no turning back?
No and the reason is battery development takes a lot of time and these recent statements by Sakti3 in the Scientific American article bear this out.
Sakti3 says it’s close to the end of lab work—custom prototype manufacturing line—but then the next step is on to small scale production and this could take a another year or two of testing before you hit mass production.
That rules out GM going with this type of battery for their mass-produced battery electric vehicle for 2016 or 2017. Plus, Sakti3 mentioned its first aim is small-scale electronics and smartphones.
More importantly, JB Straubel and Tesla Motors aren’t looking for the God battery for 2017. Everyone seems to be looking for this right chemistry to scale with at this point. Granted, these are big automakers that could scale quickly as long their company culture is rowing in the same direction.
Tesla has their battery composition set and plan to cut 30 percent or more of costs out of their current battery price, which stands anywhere from $260 to maybe $220 kWh. Take the high end and with the cost savings, the battery pack is at $185 kWh, approximately.
That’s just over $10,000 for a battery pack for a 55kWh battery pack—assumption 30% battery cost reduction translates to battery pack. Also, my assumption above is that a Gen 3 car will be smaller and could get 220 miles with a smaller battery pack.
The rub for me is that the roadmap is in place for Tesla Motors battery chemistry and this should get them to a mass-market electric vehicle, first. Maybe other automakers are close to a new chemistry, but automotive testing and applications take time.
In the end, I’m all for the god battery sooner rather than later but Tesla Motors just isn’t waiting for it.
News
SpaceX reaches incredible milestone with Starlink program
SpaceX reached an incredible milestone with its Starlink program with a launch last night, as the 3,000th satellite of the year was launched into low Earth orbit.
On Monday, SpaceX also achieved its 32nd flight with a single Falcon 9 rocket from NASA’s Kennedy Space Center.
The mission was Starlink 6-92, and it utilized the Falcon 9 B1067 for the 32nd time this year, the most-used Falcon booster. The flight delivered SpaceX’s 3000th Starlink satellite of the year, a massive achievement.
There were 29 Starlink satellites launched and deployed into LEO during this particular mission:
Falcon 9 launches 29 @Starlink satellites from Florida pic.twitter.com/utKrXjHzPN
— SpaceX (@SpaceX) December 9, 2025
SpaceX has a current goal of certifying its Falcon boosters for 40 missions apiece, according to Spaceflight Now.
The flight was the 350th orbital launch from the nearby SLC-40, and the 3,000 satellites that have been successfully launched this year continue to contribute to the company’s goal of having 12,000 satellites contributing to global internet coverage.
There are over five million users of Starlink, the latest data shows.
Following the launch and stage separation, the Falcon 9 booster completed its mission with a perfect landing on the ‘Just Read the Instructions’ droneship.
The mission was the 575th overall Falcon 9 launch, highlighting SpaceX’s operational tempo, which continues to be accelerated. The company averages two missions per week, and underscores CEO Elon Musk’s vision of a multi-planetary future, where reliable connectivity is crucial for remote work, education, and emergency response.
As Starlink expands and works toward that elusive and crucial 12,000 satellite goal, missions like 6-92 pave the way for innovations in telecommunications and enable more internet access to people across the globe.
With regulatory approvals in over 100 countries and millions of current subscribers, SpaceX continues to democratize space, proving that reusability is not just feasible, but it’s also revolutionary.
News
Tesla expands new Full Self-Driving program in Europe
Tesla expanded its new Full Self-Driving program, which gives people the opportunity to experience the company’s suite, in Europe.
Tesla recently launched an opportunity for Europeans to experience Full Self-Driving, not in their personal vehicles, but through a new ride-along program that initially launched in Italy, France, and Germany back in late November.
People could experience it by booking a reservation with a local Tesla showroom, but timeslots quickly filled up, making it difficult to keep up with demand. Tesla expanded the program and offered some additional times, but it also had its sights set on getting the program out to new markets.
It finally achieved that on December 9, as it launched rides in Denmark and Switzerland, adding the fourth and fifth countries to the program.
Tesla confirmed the arrival of the program to Denmark and Switzerland on X:
Now available in Denmark & Switzerland
🇩🇰 https://t.co/IpCSwHO566 https://t.co/V2N5EarLNX
— Tesla Europe & Middle East (@teslaeurope) December 9, 2025
The program, while a major contributor to Tesla’s butts in seats strategy, is truly another way for the company to leverage its fans in an effort to work through the regulatory hurdles it is facing in Europe.
Tesla has faced significant red tape in the region, and although it has tested the FSD suite and been able to launch this ride-along program, it is still having some tremendous issues convincing regulatory agencies to allow it to give it to customers.
CEO Elon Musk has worked with regulators, but admitted the process has been “insanely painful.”
The most recent development with FSD and its potential use in Europe dealt with the Dutch approval authority, known as the RDW.
Tesla says Europe could finally get FSD in 2026, and Dutch regulator RDW is key
Tesla said it believes some regulations are “outdated and rules-based,” which makes the suite ineligible for use in the European jurisdiction.
The RDW is working with Tesla to gain approval sometime early next year, but there are no guarantees. However, Tesla’s angle with the ride-along program seems to be that if it can push consumers to experience it and have a positive time, it should be easier for it to gain its footing across Europe with regulatory agencies.
News
Tesla ramps hiring for Roadster as latest unveiling approaches
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering.
Tesla is ramping up hiring for positions related to the Roadster program, the company’s ultra-fast supercar that has been teased to potentially hover by CEO Elon Musk.
The company seems to be crossing off its last handful of things before it plans to unveil the vehicle on April Fool’s Day, just about four months away.
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering. All three are located in Northern California, with two being at the Fremont Factory and the other at the company’s Engineering HQ in Palo Alto.
Technical Program Manager, Battery Manufacturing
Located in Fremont, this role specifically caters to the design of the Roadster to factory operations. It appears this role will mostly have to do with developing and engineering the Roadster’s battery pack and establishing the production processes for it:
“You will foster collaboration across design engineering, manufacturing, quality, facilities, and production to align with company priorities. Additionally, you will understand project opportunities, challenges, and dependencies; translate scattered information into concise, complete messages; and communicate them to every team member. As the business process development lead, you will develop, maintain, and implement tools and processes to accelerate battery manufacturing execution, achieve cross-functional alignment, and deliver highly efficient systems.”
Manufacturing Engineer, Roadster
Also located in Fremont, this role also has to deal with the concept development and launch of battery manufacturing equipment. Tesla says:
“In this role, you will take large-scale manufacturing systems for new battery products and architectures from the early concept development stage through equipment launch, optimization, and handover to local operations teams.”
Manufacturing Vision Engineer, Battery Vision
This position is in Palo Alto at Tesla’s Engineering Headquarters, and requires the design and scale of advanced inspection and control systems to next-generation battery products:
“You’ll work on automation processes that directly improve battery performance, quality, and cost, collaborating with world-class engineers in a fast-paced, hands-on environment.”
Developing and deploying 2D and 3D vision and measurement systems from proof-of-concept to deployment on high-volume battery manufacturing lines is part of the job description.
Roadster Unveiling
Tesla plans to unveil the Roadster on April 1, and although it was planned for late this year, it is nice to see the company put out a definitive date.
Musk said on the Joe Rogan Experience Podcast in late October:
“Whether it’s good or bad, it will be unforgettable. My friend Peter Thiel once reflected that the future was supposed to have flying cars, but we don’t have flying cars. I think if Peter wants a flying car, he should be able to buy one…I think it has a shot at being the most memorable product unveil ever.”
Production should begin between 12 to 18 months after unveiling, so we could see it sometime in 2027.
