SpaceX has completed its 21st Falcon 9 launch of 2022, continuing an impressive average cadence of more than one launch per week.
After an unexplained 40-minute delay from 6:20 am EDT, former Falcon Heavy booster B1052 lifted off from Kennedy Space Center Launch Complex 39A shortly after sunrise at 6:59 am EDT (10:59 UTC) on Wednesday, May 18th. Carrying its second batch of Starlink satellites on its third mission as a Falcon 9 boosters and fifth launch overall, Falcon B1052 performed flawlessly, safely carrying a reused Falcon fairing, expendable upper stage, and stack of 53 Starlink satellites most of the way free of Earth’s atmosphere.
B1052 then separated and coasted back to Earth as Falcon 9’s upper stage continued to orbit. About nine minutes after liftoff, the booster touched down on drone ship A Shortfall of Gravitas (ASOG) and the upper stage reached a safe parking orbit, marking the premature end of SpaceX’s official webcast. Starlink satellite deployment – typically anywhere from 20 to 60 minutes after liftoff – now occurs off-camera, with only a slight vocal confirmation and a tweet from SpaceX to verify the most important part of each mission.
Looking beyond the bounds of calendar years, Starlink 4-18 is SpaceX’s 28th successful launch since November 11th, 2021 – a period of six months and seven days or 27 weeks. In other words, SpaceX is already more than half of the way to demonstrating a sustained cadence of one launch per week over a full 12 months, leaving little doubt that the company has the ability to achieve CEO Elon Musk’s lesser goal of 52 launches in 2022. The company’s launch teams, processing facilities, launch pads, Falcon production, and fleets of reusable boosters and fairings have proven themselves fully capable.
The only remaining uncertainty stems from reliability and unknown unknowns. Even the most reliable rocket in the world is a highly complex system that can still fail in thousands of unique ways. After an impressive streak of 130 consecutively successful launch campaigns, Falcon 9 is by some measures the most reliable launch vehicle still in operation. As early as June 2022, however, Falcon 9 will have an opportunity to set the record for most consecutive successes of any rocket in history when it attempts to launch without fail for the 134th time in a row. For now, Russia’s R-7 or Soyuz family of rockets – which have launched close to 2000 times since 1966 – hold the current record of 133 consecutive successes. Technically, if one considers Falcon 9 and Falcon Heavy part of the same family, R-7/Soyuz and Falcon are now tied with records of 133 consecutive successes.
However, the differences between Falcon 9 and Falcon Heavy far exceed the relatively small differences between the many slight R-7/Soyuz variations. Given that the variants of Falcon 9 rockets that began SpaceX’s current streak of success in January 2017 were significantly different than those flying today, the full R-7/Soyuz family and Falcon 9 are more directly and fairly comparable than they might initially appear.

Regardless, SpaceX will have accomplished an extraordinary feat if Falcon 9 does complete its 134th successful launch in a row sometime next month. But simultaneously, R-7’s 133-launch record serves as a reminder that at one point in history, an entirely different rocket family that had been averaging more than one launch per week for almost a decade still failed after 133 successful launches. Modern airliners serve as another good reminder of the inherent instability of complex artificial mechanisms: even though they are statistically one of the safest forms of mass transit humans have ever created, they still occasionally crash.
To assume any such system has become immune to failure after a number of successes is to tempt fate. Nonetheless, with the qualification that there are no guarantees, SpaceX’s performance over the last five years significantly raises confidence in the company’s ability to continue executing and completing orbital launches at a rapid pace throughout 2022 (and beyond) without failure.
Beyond Starlink 4-18, SpaceX is scheduled to launch its own Transporter-5 rideshare mission as early as May 25th, Cargo Dragon’s CRS-25 space station supply mission on June 7th, Egypt’s Nilesat-301 communications satellite on June 10th, and a number of other unspecified commercial launches and Starlink missions in June and July.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
