News
SpaceX ready for 60-satellite Starlink launch debut: third time’s the charm?
SpaceX is approximately two hours away from its third Starlink v0.9 launch attempt, an ambitious batch of 60 satellites that will also be the company’s heaviest payload ever.
As hinted at by the name “Starlink v0.9”, these sixty satellites are not quite the final design. More a beta test at an unprecedented scale, several critical new technologies and strategies will be put to the test on this launch, ranging from a seriously unorthodox satellite deployment method to the near-final krypton-fueled electric thrusters. Same as SpaceX’s May 15th and 16th launch attempts, Starlink v0.9’s third try has a 90-minute window that opens at 10:30 pm EDT (02:30 UTC), this time on Thursday, May 23rd.
Third time’s the charm ?
May 23rd’s Starlink v0.9 launch attempt will be the mission’s third, preceded by May 15th – scrubbed by high-altitude wind shear – and May 16th, cancelled before fueling began in order to troubleshoot and update the software aboard the 60 Starlink satellites. After a week of concerted effort from SpaceX technicians and software developers, those issues have been more or less dealt with and the first batch of Starlink satellites are once again ready for orbit.

According to SpaceX, the massive payload of 60 flat-packed Starlink satellites weighs approximately 18.5 tons (16,800-18,500 kg, unclear if short or metric tons). Either way, it will easily break SpaceX’s previous record – likely Crew Dragon’s DM-1 debut – and become the heaviest payload the company has ever attempted to launch. Despite the sheer size and mass of the payload, Falcon 9 booster B1049 – launching for the third time – will still be able to land aboard drone ship Of Course I Still Love You (OCISLY) some eight minutes after launch.
If the recovery goes well, B1049 will become the third SpaceX booster to successfully complete three orbital-class launches and landings, paving the way for a series of fourth flights (and beyond) later this year.
Cubesats, meet Flatsats
Aside from the mission’s impressive rocket performance requirements, Starlink v0.9 will also serve as a huge beta test of a dozen or more new technologies. The most visible of those has to be each satellite’s truly unique flat, rectangular form factor, as well as SpaceX’s use of flat-packing in place of a dedicated structure for holding and dispensing the satellites. It’s unclear if there is some additional reinforcement or if the satellites themselves provide all of the stack’s strength. If the latter is true, the satellites at the bottom must survive massive forces – ranging from ~7000 kg at rest to 35,000+ kg at the end of Falcon 9’s second stage burn.
Aside from their exotic structure, each Starlink satellite also carries a single-panel ~3 kW solar array using one of two experimental deployment mechanisms. Each satellite’s main propulsion comes from an unknown number of Hall Effect thrusters (i.e. electric/ion thrusters) fueled by krypton instead of the usual xenon. SpaceX’s internally-developed krypton thrusters are the only known examples to have been tested in orbit.
Aside from thrusters, SpaceX CEO Elon Musk also believes that the company’s space-based phased array antennas – also developed in-house – are more advanced than any operational competitor on Earth. Musk also revealed that SpaceX would attempt to use a bizarre and largely untested method of satellite deployment, spinning Falcon 9’s upper stage and releasing the satellites with inertia instead of traditional springs or pushrods.
Regardless of whether everything works as planned, the launch is going to be a spectacular one and the webcast may even include views of the bizarre satellite deployment. Catch SpaceX’s live coverage of the mission – likely to include new details about the Starlink constellation – at the link below. Coverage will begin ~15 minutes prior to liftoff.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Samsung’s Tesla AI5/AI6 chip factory to start key equipment tests in March: report
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant.
Samsung Electronics seems to be ramping its efforts to start operations at its Taylor, Texas semiconductor plant, which will produce Tesla’s next-generation AI5 chip.
Preparing for Tesla’s AI5/AI6 chips
As per a report by Sina Finance, Samsung Electronics is looking to begin trial operations of extreme ultraviolet (EUV) lithography equipment at its Taylor facility in March. These efforts are reportedly intended to support the full production of Tesla’s AI5 chips starting in the latter half of 2026.
The Taylor factory, Samsung’s first wafer fabrication plant in the United States, covers roughly 4.85 million square meters and is nearing completion. Media reports, citing contractors, have estimated that about 7,000 workers now work on the factory, about 1,000 of whom are reportedly working from the facility’s office building.
Samsung is reportedly preparing to apply for a temporary occupancy permit, which would allow production to begin before the plant is fully completed.
Tesla’s aggressive AI chip roadmap
Elon Musk recently stated that Tesla’s next-generation AI5 chip is nearly complete, while early development on its successor, AI6, is already underway. Musk shared the update in a post on X, which also happened to be a recruiting message for engineers.
As per Musk, Tesla is looking to iterate its in-house AI chips on an accelerated timeline, with future generations, including AI7, AI8, and AI9, targeting a roughly nine-month design cycle. He also stated that the rapid cadence could allow Tesla’s chips to become the highest-volume AI processors in the world.
Previous reports have indicated that Samsung Electronics would be manufacturing Tesla’s AI5 chip, alongside its rival, Taiwan Semiconductor Manufacturing Company (TSMC). The two suppliers are expected to produce different versions of Tesla’s AI5 chip, with TSMC using a 3nm process and Samsung targeting 2nm production.
Elon Musk
Elon Musk’s Boring Company studying potential Giga Nevada tunnel: report
The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Elon Musk’s tunneling startup, The Boring Company, has been studying a potential tunnel system connecting Reno to Tesla Gigafactory Nevada, as per documents obtained by Fortune. The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.
Potential Giga Nevada tunnel
Documents reviewed by Fortune showed that The Boring Company received $50,000 in October to produce conceptual designs and a feasibility report for a tunnel beneath a nine-mile stretch of highway leading to Gigafactory Nevada. The payment came from the Economic Development Authority of Western Nevada (EDAWN), a nonprofit that works with the state to attract and expand businesses.
The proposed tunnel was one of several transportation alternatives being explored to address rising congestion and accidents along Interstate 80, which serves the Tahoe-Reno Industrial Center. The massive industrial park houses major employers, including Tesla and Panasonic, both of which had been in contact with the Nevada Governor’s Office regarding potential transportation solutions.
Emails obtained through public records requests showed that Tesla and Panasonic have also supported a separate commuter rail study that would use existing freight rail alongside the Interstate. It remains unclear if The Boring Company’s feasibility report had been completed, and key details for the potential project, including tunnel length, cost, and if autonomous Teslas would be used, were not disclosed.

Relieving I-80 congestion
Traffic and accidents along I-80 have increased sharply as data centers and new businesses moved into the 107,000-acre industrial center. State transportation data showed that the number of vehicles traveling certain stretches of the highway during peak hours doubled between January and July 2025 alone. Roughly 22,000 employees commute daily to the industrial park, with nearly 8,000 working for Tesla and more than 4,000 for Panasonic at the Giga Nevada complex.
Bill Thomas, who runs the Regional Transportation Commission of Washoe County, shared his thoughts about safety concerns in the area. “At this point in time, there’s about (one accident) every other day,” he said. He also noted that he is supportive of any projects that could alleviate traffic and accidents on the Interstate.
“We’re not paying for it. I’m not involved in it. But I understand there are conversations exploring whether that could be done. If there’s a private solution that helps the problem and improves safety, as far as I’m concerned, more power to them,” Thomas stated.
News
Tesla might have built redundancies for Cybercab charging
When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging.
A newly spotted panel on Tesla’s Cybercab prototype may point to a practical backup for the vehicle’s wireless charging system as it nears mass production.
Tesla watchers have speculated that the panel could house a physical NACS port, which would ensure that the autonomous two-seater could operate reliably even before the company’s wireless charging infrastructure is deployed.
Cybercab possible physical charge port
The discussion was sparked by a post on X by Tesla watcher Owen Sparks, who highlighted a rather interesting panel on the Cybercab’s rear. The panel, which seemed to be present in the prototype units that have been spotted across the United States recently, seemed large enough to house a physical charge port.
When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging. Since then, however, Tesla has remained largely quiet about the system’s rollout timeline. With the Cybercab expected to enter production in a few months, equipping the vehicle with a physical NACS port would allow it to charge at Superchargers nationwide without relying exclusively on still-undeployed wireless chargers.
Such an approach would not rule out wireless charging long-term. Instead, it would give Tesla flexibility, allowing the Cybercab to operate immediately at scale while wireless charging solutions are rolled out later. For a vehicle designed to operate continuously and autonomously, redundancy in charging options would be a practical move.
Growing Cybercab sightings
Recent sightings of the Cybercab prototype in Chicago point to the same design philosophy. Images shared on social media showed the vehicle coated in road grime, while its rear camera area appeared noticeably cleaner, with visible traces of water on the trunk.
The observation suggests that the Cybercab is equipped with a rear camera washer. As noted by Model Y owner and industry watcher Sawyer Merritt, this is a feature Tesla owners have requested for years, particularly in snowy or wet climates where dirt and slush can obscure cameras and degrade the performance of systems like FSD.
While only the rear camera washer was clearly visible, the sighting raises the possibility that Tesla may equip additional exterior cameras with similar cleaning systems. For a vehicle that operates without a human driver, after all, maintaining camera visibility in all conditions is essential. Ultimately, the charge-port speculation and camera-washer sightings suggest Tesla is approaching the Cybercab with practicality in mind.