Connect with us
SpaceX completed its first Starlink launch on May 23rd, flying B1049 for the third time. SpaceX's next Starlink launch will very likely mark the first time a booster has flown four orbital-class missions. (SpaceX) SpaceX completed its first Starlink launch on May 23rd, flying B1049 for the third time. SpaceX's next Starlink launch will very likely mark the first time a booster has flown four orbital-class missions. (SpaceX)

News

SpaceX ready for 60-satellite Starlink launch debut: third time’s the charm?

SpaceX is just hours away from its third attempt at Starlink's dedicated launch debut. (SpaceX)

Published

on

SpaceX is approximately two hours away from its third Starlink v0.9 launch attempt, an ambitious batch of 60 satellites that will also be the company’s heaviest payload ever.

As hinted at by the name “Starlink v0.9”, these sixty satellites are not quite the final design. More a beta test at an unprecedented scale, several critical new technologies and strategies will be put to the test on this launch, ranging from a seriously unorthodox satellite deployment method to the near-final krypton-fueled electric thrusters. Same as SpaceX’s May 15th and 16th launch attempts, Starlink v0.9’s third try has a 90-minute window that opens at 10:30 pm EDT (02:30 UTC), this time on Thursday, May 23rd.

Third time’s the charm ?

May 23rd’s Starlink v0.9 launch attempt will be the mission’s third, preceded by May 15th – scrubbed by high-altitude wind shear – and May 16th, cancelled before fueling began in order to troubleshoot and update the software aboard the 60 Starlink satellites. After a week of concerted effort from SpaceX technicians and software developers, those issues have been more or less dealt with and the first batch of Starlink satellites are once again ready for orbit.

The second phase of Starlink testing – 60 advanced satellites – in a single fairing. (SpaceX)

According to SpaceX, the massive payload of 60 flat-packed Starlink satellites weighs approximately 18.5 tons (16,800-18,500 kg, unclear if short or metric tons). Either way, it will easily break SpaceX’s previous record – likely Crew Dragon’s DM-1 debut – and become the heaviest payload the company has ever attempted to launch. Despite the sheer size and mass of the payload, Falcon 9 booster B1049 – launching for the third time – will still be able to land aboard drone ship Of Course I Still Love You (OCISLY) some eight minutes after launch.

If the recovery goes well, B1049 will become the third SpaceX booster to successfully complete three orbital-class launches and landings, paving the way for a series of fourth flights (and beyond) later this year.

Cubesats, meet Flatsats

Aside from the mission’s impressive rocket performance requirements, Starlink v0.9 will also serve as a huge beta test of a dozen or more new technologies. The most visible of those has to be each satellite’s truly unique flat, rectangular form factor, as well as SpaceX’s use of flat-packing in place of a dedicated structure for holding and dispensing the satellites. It’s unclear if there is some additional reinforcement or if the satellites themselves provide all of the stack’s strength. If the latter is true, the satellites at the bottom must survive massive forces – ranging from ~7000 kg at rest to 35,000+ kg at the end of Falcon 9’s second stage burn.

Aside from their exotic structure, each Starlink satellite also carries a single-panel ~3 kW solar array using one of two experimental deployment mechanisms. Each satellite’s main propulsion comes from an unknown number of Hall Effect thrusters (i.e. electric/ion thrusters) fueled by krypton instead of the usual xenon. SpaceX’s internally-developed krypton thrusters are the only known examples to have been tested in orbit.

Aside from thrusters, SpaceX CEO Elon Musk also believes that the company’s space-based phased array antennas – also developed in-house – are more advanced than any operational competitor on Earth. Musk also revealed that SpaceX would attempt to use a bizarre and largely untested method of satellite deployment, spinning Falcon 9’s upper stage and releasing the satellites with inertia instead of traditional springs or pushrods.

Advertisement

Regardless of whether everything works as planned, the launch is going to be a spectacular one and the webcast may even include views of the bizarre satellite deployment. Catch SpaceX’s live coverage of the mission – likely to include new details about the Starlink constellation – at the link below. Coverage will begin ~15 minutes prior to liftoff.

https://www.youtube.com/watch?v=AfbIMknNWks

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX and xAI tapped by Pentagon for autonomous drone contest

The six-month competition was launched in January and is said to carry a $100 million award.

Published

on

Credit: SpaceX/X

SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News

The six-month competition was launched in January and is said to carry a $100 million award.

Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.

Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.

Advertisement

The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.

The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.

The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.

Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.

Advertisement
Continue Reading

News

Doug DeMuro names Tesla Model S the Most Important Car of the last 30 years

In a recent video, the noted reviewer stated that the choice was “not even a question.”

Published

on

Popular automotive reviewer and YouTuber Doug DeMuro has named the 2012 Tesla Model S as the most important car of the last 30 years.

In a recent video, the noted reviewer stated that the choice was “not even a question,” arguing that the Model S did more to change the trajectory of the auto industry than any other vehicle released since the mid-1990s.

“Unquestionably in my mind, the number one most important car of the last 30 years… it’s not even a question,” DeMuro said. “The 2012 Tesla Model S. There is no doubt that that is the most important car of the last 30 years.”

DeMuro acknowledged that electric vehicle adoption has faced recent headwinds. Still, he maintained that long-term electrification is inevitable.

Advertisement

“If you’re a rational person who’s truthful with yourself, you know that the future is electric… whether it’s 10, 20, 30 years, the future will be electric, and it was the Model S that was the very first car that did that truthfully,” he said.

While earlier EVs like the Nissan Leaf and Chevrolet Volt arrived before the Model S, DeMuro argued that they did not fundamentally shift public perception. The Model S proved that EVs “could be cool, could be fast, could be luxurious, could be for enthusiasts.” It showed that buyers did not have to make major compromises to drive electric.

He also described the Model S as a cultural turning point. Tesla became more than a car company. The brand expanded into Superchargers, home energy products, and a broader tech identity.

DeMuro noted that the Leaf and Volt “made a huge splash and taught us that it was possible.” However, he drew a distinction between being first and bringing a technology into the mainstream.

Advertisement

“It’s rarely about the car that does it first. It’s about the car that brings it into the mainstream,” he said. “The Model S was the car that actually won the game even though the Leaf and Volt scored the first.”

He added that perhaps the Model S’ most surprising achievement was proving that a new American automaker could succeed. For decades, industry observers believed the infrastructure and capital requirements made that nearly impossible.

“For decades, it was generally agreed that there would never be another competitive American car company because the infrastructure and the investment required to start up another American car company as just too challenging… It was just a given basically that you couldn’t do it. And not only did they go it, but they created a cultural icon… That car just truly changed the world,” he said. 

Advertisement
Continue Reading

Elon Musk

Elon Musk doubles down on Tesla Cybercab timeline once again

“Cybercab, which has no pedals or steering wheel, starts production in April,” Musk said.

Published

on

Credit: @JT59052914/X

CEO Elon Musk doubled down once again on the timeline of production for the Tesla Cybercab, marking yet another example of the confidence he has in the company’s ability to meet the aggressive timeline for the vehicle.

It is the third time in the past six months that Musk has explicitly stated Cybercab will enter production in April 2026.

On Monday morning, Musk reiterated that Cybercab will enter its initial manufacturing phase in April, and that it would not have any pedals or a steering wheel, two things that have been speculated as potential elements of the vehicle, if needed.

Musk has been known to be aggressive with timelines, and some products have been teased for years and years before they finally come to fruition.

One of perhaps the biggest complaints about Musk is the fact that Tesla does not normally reach the deadlines that are set: the Roadster, Semi, and Unsupervised Full Self-Driving suite are a few of those that have been given “end of this year” timelines, but have not been fulfilled.

Nevertheless, many are able to look past this as part of the process. New technology takes time to develop, but we’d rather not hear about when, and just the progress itself.

However, the Cybercab is a bit different. Musk has said three times in the past six months that Cybercab will be built in April, and this is something that is sort of out of the ordinary for him.

In December 2025, he said that Tesla was “testing the production system” of the vehicle and that “real production ramp starts in April.

Elon Musk shares incredible detail about Tesla Cybercab efficiency

On January 23, he said that “Cybercab production starts in April.” He did the same on February 16, marking yet another occasion that Musk has his sights set on April for initial production of the vehicle.

Musk has also tempered expectations for the Cybercab’s initial production phase. In January, he noted that Cybercab would be subjected to the S-curve-type production speed:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Cybercab will be a huge part of Tesla’s autonomous ride-sharing plans moving forward.

Continue Reading