Connect with us

News

SpaceX adds a second drone ship to its East Coast rocket recovery fleet

Drone ship Of Course I Still Love You returned to Port Canaveral on December 7th with Falcon 9 booster B1059. OCISLY was joined by a second drone ship for the first time ever just days later. (SpaceX)

Published

on

On December 10th, SpaceX’s East Coast rocket recovery fleet added a second drone ship to its ranks in a bid to expand its capabilities to support dozens of annual Falcon 9 and Heavy launches, as well as experimental Starship and Super Heavy booster recoveries.

Formerly stationed out of Port of Los Angeles to support SpaceX’s once-substantial West Coast launch manifest, the need for West Coast launches has rapidly dried up over the last six months. That drought had such a long lead that SpaceX decided to transfer drone ship Just Read The Instructions (JRTI) through the Panama Canal, moving the vessel several thousand miles from Port of Los Angeles to Port Canaveral, Florida.

JRTI made it through the Canal several months ago and headed East towards Florida before making an intriguing and lengthy pit stop in a Louisiana port. While there, marine engineers and technicians performed a number of unknown tasks presumed to be a scheduled period of inspections and maintenance. In the last few weeks JRTI spent in Louisiana, SpaceX loaded the drone ship with more than a dozen huge generators and power controllers, as well as six massive maneuvering thrusters.

Although perspectives were lacking while JRTI was docked in LA, it was clear that some (or all) of the new hardware was meant for the drone ship, indicating that the rocket recovery platform could be in for some major upgrades. The aforementioned thrusters are much larger and appear to be heavier than JRTI’s former blue azimuth thrusters, four of which also adorn Florida-based drone ship Of Course I Still Love You (OCISLY).

Those massive thrusters are presumably meant for JRTI (and possibly OCISLY). The fact that they have been delivered alongside an even larger number of generators – far more than are usually present on SpaceX drone ships – indicates that their power output is probably larger, too. It’s not clear how much more powerful they are but one goal is unequivocal: with more powerful thrusters, SpaceX’s drone ships should be much more tolerant of bad weather, meaning that SpaceX will be able to launch Falcon 9, Falcon Heavy, and Starship without having to worry as much about the weather hundreds of miles downrange.

Advertisement
-->

Depending on how powerful they are, it’s also possible that those upgraded thrusters are strong enough to independently power drone ships to and from their ocean landing zones. As of now, SpaceX must contract days of tugboat services to tow drone ships to and from their landing zones, by far one of the biggest recurring costs for booster recoveries. If a major power supply upgrade and much larger thrusters are indeed enough to enable independent cruise capabilities, it could significantly streamline SpaceX’s drone ship recovery efforts, cutting costs and increasing flexibility and availability.

It’s hard to say why drone ship JRTI only brought six new thrusters with it, given that SpaceX’s East Coast fleet now has two drone ships and four thrusters are needed to enable stationkeeping on just one of them. Perhaps two more thrusters are on backorder and will be delivered directly to Port Canaveral. More likely, only one drone ship – likely JRTI – will initially be upgraded with new thrusters and power equipment, leaving two spare thrusters in case those installed are damaged by recovery attempts or fail for more mundane reasons.

In the past, drone ship OCISLY has suffered a handful of recovery anomalies that forced SpaceX to replace the vessel’s blue azimuth thrusters and their associated hydraulic equipment. In some cases, a lack of replacement thrusters lead SpaceX to scavenge drone ship JRTI, leaving the ship without thrusters for several months. With these latest upgrades, SpaceX has presumably learned from those past mistakes and ensured that several spare generators and thrusters are on hand.

Given that SpaceX has yet to install those upgraded thrusters or generators on either JRTI or OCISLY, as well as the general uncertainty surrounding their purpose, it’s safe to say that the next several weeks will be exciting. For now, it’s unknown when JRTI will be ready to support its first East Coast rocket recovery, but there will be plenty of launches to choose from once she is.

With two drone ships now stationed out of Port Canaveral, SpaceX will be able to support a more capable Falcon Heavy configuration, expending the center core while recovering both side boosters at sea. SpaceX will also be able to attempt experimental Starship and Super Heavy drone ship landings while still having a spare ship to support its regular Falcon 9 missions. Most importantly, two drone ships will allow SpaceX to reach launch/landing cadences and turnaround times previously impossible with a single ship, an absolute necessity if the company hopes to achieve its goal of ~24 Starlink launches on top of 10+ commercial launches in 2020.

Advertisement
-->

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading