News
SpaceX’s next big BFR spaceship part finished in Port of LA tent facility
The first 9-meter (29.5-foot) diameter composite propellant tank dome for SpaceX’s full-scale BFR spaceship prototype has been spotted more or less complete at the company’s temporary Port of Los Angeles facility, unambiguous evidence that SpaceX is continuing to rapidly fabricate major components of its next-generation rocket.
Speaking at a dedicated BFR update event in mid-September, CEO Elon Musk foreshadowed as much, and recent updates have reiterated just how committed SpaceX is to BFR and just how keen the company is to waste no time at all.

“We’ve built the first cylinder section…and we’ll be building the domes and the engine section soon.” – SpaceX CEO Elon Musk, September 2018
During that September 17th presentation, Musk did not parse his words despite a self-admitted tendency to look at SpaceX’s development program timelines (Falcon 9, Falcon Heavy, Dragon, BFR) through rose-tinted glasses. Just two months after he uttered the quote above, SpaceX has visibly either finished or nearly finished a 9-meter diameter BFR spaceship (BFS) tank dome.
Due to SpaceX’s opaque treatment of development programs (both literally for the tent and figuratively for official updates), it’s possible that this may even the second dome completed so far. Either way, it can be extrapolated – assuming that the layout of BFR 2017 is generally representative of BFR 2018 – that the first spaceship prototype will require two or three roughly identical tank domes. If the common-dome tank layout is basically the same (disclaimer: it might be quite different), then SpaceX may end up mounting BFS’ 7 Raptor engines almost directly to the rear of the bottom tank dome, requiring either significant structural reinforcement or a second uniquely-engineer and optimized dome.
- A tall platform was moved inside the tent around November 10th, likely to support the integration of the tank dome and barrel section. (Pauline Acalin)
- The dome was spied inside the tent on November 12. (Pauline Acalin)
- The dome (left) and barrel section (right) can now be integrated. (Pauline Acalin)
- BFR 2017’s spaceship engine section. (SpaceX)
- An overview of BFS (circa 2017). (SpaceX)O
Judging from SpaceX’s and Musk’s desire to make reusable rockets as reliable as (if not even more reliable than) commercial airliners, the safest form of mass-transit humans have created, it seems more likely than not that Raptor and BFR will continue SpaceX’s practice of quite literally surrounding each engine with thrust-transmitting structures that simultaneously act as armored shields. In the event that a Merlin engine fails on Falcon 9 or Heavy, each booster’s octaweb contains nine separate armored chambers that exist to isolate each engine in the event of a catastrophic failure. In fact, a Merlin failure – the only such in-flight failure known – during SpaceX’s CRS-1 Dragon launch in 2012 demonstrated the efficacy of this design, preventing the failure of just one of nine engines from causing total mission failure.
Rise of the ‘hexaweb’?
To replicate that design strategy on BFR (both booster and spaceship) would be an act of simple pragmatism – it’s always preferable to design for survivability and reliability than to couch launch and mission success primarily on the reliability of individual components. Because SpaceX chose not to share similarly detailed cutaways of BFR’s updated 2018 design, it’s unclear if the spaceship’s engine section (“hexaweb”, to borrow from “octaweb”) has changed dramatically.
Given the unexpected decision to move entirely away from a version of Raptor specifically optimized for vacuum operation for BFR’s first iteration, as well as the new presence of ~90 cubic meters of storage bins around the circumference of the spaceship’s aft, it’s possible that SpaceX will opt for a design more reminiscent of the Falcon family’s octaweb.
- The rear of SpaceX’s updated BFS.
- A better view. (SpaceX)
- A September 2018 render of Starship (then BFS) shows one of the vehicle’s two hinged wings/fins/legs. (SpaceX)
- A gif of Raptor throttling over the course of a 90+ second static-fire test in McGregor, Texas. (SpaceX)
Regardless, the appearance of a completed BFS tank dome is a major development on the vehicle’s path to integrated testing and paves the way for the fabrication of additional tank domes, barrel sections, engine sections, and more. Particularly obvious and noteworthy will be the fabrication of the prototype spaceship’s pointed cone-shaped nose section, its large tripod fins/wings/legs, and its two forward canard wings.
With all three fins/wings installed, BFS – in its current iteration – would have an unbelievable circumference of ~67 meters (220 feet) and a ‘finspan’ of perhaps 21 meters (~70 feet) tip to tip. BFS is going to be a very hard spaceship to hide.
Elon Musk
SpaceX’s Starship FL launch site will witness scenes once reserved for sci-fi films
A Starship that launches from the Florida site could touch down on the same site years later.
The Department of the Air Force (DAF) has released its Final Environmental Impact Statement for SpaceX’s efforts to launch and land Starship and its Super Heavy booster at Cape Canaveral Space Force Station’s SLC-37.
According to the Impact Statement, Starship could launch up to 76 times per year on the site, with Super Heavy boosters returning within minutes of liftoff and Starship upper stages landing back on the same pad in a timeframe that was once only possible in sci-fi movies.
Booster in Minutes, Ship in (possibly) years
The EIS explicitly referenced a never-before-seen operational concept: Super Heavy boosters will launch, reach orbit, and be caught by the tower chopsticks roughly seven minutes after liftoff. Meanwhile, the Starship upper stage will complete its mission, whether a short orbital test, lunar landing, or a multi-year Mars cargo run, and return to the exact same SLC-37 pad upon mission completion.
“The Super Heavy booster landings would occur within a few minutes of launch, while the Starship landings would occur upon completion of the Starship missions, which could last hours or years,” the EIS read.
This means a Starship that departs the Florida site in, say, 2027, could touch down on the same site in 2030 or later, right beside a brand-new stack preparing for its own journey, as noted in a Talk Of Titusville report. The 214-page document treats these multi-year round trips as standard procedure, effectively turning the location into one of the world’s first true interplanetary spaceports.
Noise and emissions flagged but deemed manageable
While the project received a clean bill of health overall, the EIS identified two areas requiring ongoing mitigation. Sonic booms from Super Heavy booster and Starship returns will cause significant community annoyance” particularly during nighttime operations, though structural damage is not expected. Nitrogen oxide emissions during launches will also exceed federal de minimis thresholds, prompting an adaptive management plan with real-time monitoring.
Other impacts, such as traffic, wildlife (including southeastern beach mouse and Florida scrub-jay), wetlands, and historic sites, were deemed manageable under existing permits and mitigation strategies. The Air Force is expected to issue its Record of Decision within weeks, followed by FAA concurrence, setting the stage for rapid redevelopment of the former site into a dual-tower Starship complex.
SpaceX Starship Environmental Impact Statement by Simon Alvarez
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”










