News
SpaceX’s next big BFR spaceship part finished in Port of LA tent facility
The first 9-meter (29.5-foot) diameter composite propellant tank dome for SpaceX’s full-scale BFR spaceship prototype has been spotted more or less complete at the company’s temporary Port of Los Angeles facility, unambiguous evidence that SpaceX is continuing to rapidly fabricate major components of its next-generation rocket.
Speaking at a dedicated BFR update event in mid-September, CEO Elon Musk foreshadowed as much, and recent updates have reiterated just how committed SpaceX is to BFR and just how keen the company is to waste no time at all.

“We’ve built the first cylinder section…and we’ll be building the domes and the engine section soon.” – SpaceX CEO Elon Musk, September 2018
During that September 17th presentation, Musk did not parse his words despite a self-admitted tendency to look at SpaceX’s development program timelines (Falcon 9, Falcon Heavy, Dragon, BFR) through rose-tinted glasses. Just two months after he uttered the quote above, SpaceX has visibly either finished or nearly finished a 9-meter diameter BFR spaceship (BFS) tank dome.
Due to SpaceX’s opaque treatment of development programs (both literally for the tent and figuratively for official updates), it’s possible that this may even the second dome completed so far. Either way, it can be extrapolated – assuming that the layout of BFR 2017 is generally representative of BFR 2018 – that the first spaceship prototype will require two or three roughly identical tank domes. If the common-dome tank layout is basically the same (disclaimer: it might be quite different), then SpaceX may end up mounting BFS’ 7 Raptor engines almost directly to the rear of the bottom tank dome, requiring either significant structural reinforcement or a second uniquely-engineer and optimized dome.
- A tall platform was moved inside the tent around November 10th, likely to support the integration of the tank dome and barrel section. (Pauline Acalin)
- The dome was spied inside the tent on November 12. (Pauline Acalin)
- The dome (left) and barrel section (right) can now be integrated. (Pauline Acalin)
- BFR 2017’s spaceship engine section. (SpaceX)
- An overview of BFS (circa 2017). (SpaceX)O
Judging from SpaceX’s and Musk’s desire to make reusable rockets as reliable as (if not even more reliable than) commercial airliners, the safest form of mass-transit humans have created, it seems more likely than not that Raptor and BFR will continue SpaceX’s practice of quite literally surrounding each engine with thrust-transmitting structures that simultaneously act as armored shields. In the event that a Merlin engine fails on Falcon 9 or Heavy, each booster’s octaweb contains nine separate armored chambers that exist to isolate each engine in the event of a catastrophic failure. In fact, a Merlin failure – the only such in-flight failure known – during SpaceX’s CRS-1 Dragon launch in 2012 demonstrated the efficacy of this design, preventing the failure of just one of nine engines from causing total mission failure.
Rise of the ‘hexaweb’?
To replicate that design strategy on BFR (both booster and spaceship) would be an act of simple pragmatism – it’s always preferable to design for survivability and reliability than to couch launch and mission success primarily on the reliability of individual components. Because SpaceX chose not to share similarly detailed cutaways of BFR’s updated 2018 design, it’s unclear if the spaceship’s engine section (“hexaweb”, to borrow from “octaweb”) has changed dramatically.
Given the unexpected decision to move entirely away from a version of Raptor specifically optimized for vacuum operation for BFR’s first iteration, as well as the new presence of ~90 cubic meters of storage bins around the circumference of the spaceship’s aft, it’s possible that SpaceX will opt for a design more reminiscent of the Falcon family’s octaweb.
- The rear of SpaceX’s updated BFS.
- A better view. (SpaceX)
- A September 2018 render of Starship (then BFS) shows one of the vehicle’s two hinged wings/fins/legs. (SpaceX)
- A gif of Raptor throttling over the course of a 90+ second static-fire test in McGregor, Texas. (SpaceX)
Regardless, the appearance of a completed BFS tank dome is a major development on the vehicle’s path to integrated testing and paves the way for the fabrication of additional tank domes, barrel sections, engine sections, and more. Particularly obvious and noteworthy will be the fabrication of the prototype spaceship’s pointed cone-shaped nose section, its large tripod fins/wings/legs, and its two forward canard wings.
With all three fins/wings installed, BFS – in its current iteration – would have an unbelievable circumference of ~67 meters (220 feet) and a ‘finspan’ of perhaps 21 meters (~70 feet) tip to tip. BFS is going to be a very hard spaceship to hide.
News
Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.
The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.
According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.
The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring.

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.
The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.
ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.
“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.
“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.
News
Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade
Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.
Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.
Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.
Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error.
More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report.
Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.
Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.
Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.
“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted.
Elon Musk
Elon Musk’s X goes down as users report major outage Friday morning
Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.
Elon Musk’s X experienced an outage Friday morning, leaving large numbers of users unable to access the social media platform.
Error messages and stalled loading screens quickly spread across the service, while outage trackers recorded a sharp spike in user reports.
Downdetector reports
Users attempting to open X were met with messages such as “Something went wrong. Try reloading,” often followed by an endless spinning icon that prevented access, according to a report from Variety. Downdetector data showed that reports of problems surged rapidly throughout the morning.
As of 10:52 a.m. ET, more than 100,000 users had reported issues with X. The data indicated that 56% of complaints were tied to the mobile app, while 33% were related to the website and roughly 10% cited server connection problems. The disruption appeared to begin around 10:10 a.m. ET, briefly eased around 10:35 a.m., and then returned minutes later.

Previous disruptions
Friday’s outage was not an isolated incident. X has experienced multiple high-profile service interruptions over the past two years. In November, tens of thousands of users reported widespread errors, including “Internal server error / Error code 500” messages. Cloudflare-related error messages were also reported.
In March 2025, the platform endured several brief outages spanning roughly 45 minutes, with more than 21,000 reports in the U.S. and 10,800 in the U.K., according to Downdetector. Earlier disruptions included an outage in August 2024 and impairments to key platform features in July 2023.









