Connect with us

News

SpaceX’s next West Coast Falcon 9 landing could be decided by baby seals

Falcon 9 B1051 lands aboard drone ship OCISLY after its March 3rd launch debut. The same booster will launch RCM on June 11th. (SpaceX)

Published

on

SpaceX and the Canadian Space Agency (CSA) have – at long last – officially announced a launch date for the Radarsat Constellation Mission (RCM), a ~$1B trio of Earth observation satellites.

Delayed from November, February, March, and May, RCM is now scheduled to launch on a flight-proven Falcon 9 booster from California’s Vandenberg Air Force Base (VAFB) no earlier than June 11th. The three flight-ready spacecraft were shipped from Canada in September 2018 and have now been awaiting launch in a Southern California storage facility for more than half a year. The blame for such an egregious delay can be largely placed on SpaceX, but CSA and launch customer Maxar Technologies are also partially responsible. On a lighter note, the location of RCM’s subsequent Falcon 9 landing might end up being decided by seal pupping – baby harbor seals, in other words.

Although RCM’s slip from 2018 to 2019 remains unexplained, the mission’s journey from mid-February to mid-June is a different story. Still, next to nothing is publicly known about the process SpaceX launch customers go through after contracts have been signed, particularly with respect to how Falcon boosters are assigned to missions. This is further stymied by the fact that – to date – the ~$1 billion RCM is probably the most valuable payload SpaceX has ever attempted to launch, making it a clear outlier. But, as they say, “damn the epistemological torpedoes!”

Rocket logistics hell

RCM’s logistical hell and ~6 months of delays began on December 5th, 2018 when Falcon 9 Block 5 booster B1050 – having just completed its inaugural launch debut – experienced a hydraulic pump failure. The first of its kind, B1050’s pump failure killed grid fin control authority and forced the booster to abort into the Atlantic Ocean, where it somehow pulled off a landing soft enough to leave the rocket almost entirely intact. Even more surprisingly, B1050 was safely towed back to port, lifted onto dry land, and shipped off to one of SpaceX’s many Florida hangars for inspection.

Despite its near-miraculous survival, B1050 was immediately removed from SpaceX’s fleet of flightworthy boosters. Set to become the least flight-proven flight-proven Block 5 booster yet after supporting a low-energy Cargo Dragon mission, SpaceX and CSA/Maxar had apparently reached an agreement to launch RCM on B1050.2. Despite the availability of other boosters at the time, all available cores had completed two launches (B1046, 47, and 48) or were assigned to a second launch in the near-term (B1049). This is the only rational explanation for the delays that followed.

B1049 completed its second launch in mid-January 2019 and has since floated around various SpaceX facilities while waiting for its third mission. Had CSA/Maxar been okay with a twice-flown Falcon 9, B1049 could have likely supported RCM’s launch as early as March or April. Instead, the customer – as was apparently their right – concluded that being a booster’s third launch would be an unacceptable risk, whereas launching on a once-flown booster was acceptable. The only possible solution to those demands was to manifest RCM on Falcon 9 B1051, assigned to Crew Dragon’s launch debut.

Quite possibly the worst booster one could pick for schedule preservation, Crew Dragon’s launch debut slipped – to the surprise of very few – from January to February and finally to March 3rd. B1051 launched, landed without issue, and returned to Port Canaveral a few days later, where it was transported to Pad 39A for refurbishment. The relatively gently-used booster required a bit less than 8 weeks of inspection and refurbishment before being packaged and shipped to California near the end of April (see above). By now, B1051 is likely safely inside SpaceX’s SLC-4E integration hangar, preparing for upper stage integration and a routine pre-launch static fire test.

B1051 landed aboard drone ship OCISLY around 8 minutes after launch. (SpaceX)
Falcon 9 B1051 was refurbished inside Pad 39A’s main hangar. (SpaceX – April 2019)
B1051 was shipped west on April 26th. (Facebook – Joshuah Murrah)

In short, an untimely Falcon 9 anomaly and customer preferences conspired to delay the launch of Canada’s Radarsat Constellation Mission by nearly four months, from February 18th to June 11th. With any luck, the mission’s flow will be issue-free and suffer no additional delays.

FCC launch communications licenses currently show that SpaceX plans to return Falcon 9 B1051 to the launch site (RTLS) after launch, rather than landing aboard drone ship Just Read The Instructions (JRTI). With a total launch mass likely around 5000 kg (11,000 lb), Falcon 9 should easily be able to manage a RTLS recovery. However, SpaceX’s West Coast LZ-4 use permit prevents the company from landing rockets at the pad during harbor seal pupping season, typically March thru June. The sonic booms and noise generated during Falcon 9’s spectacular landings might end up stressing endangered harbor seals, potentially causing parents to abandon their seal pups in confusion. As such, JRTI may be forced to get some exercise after spending almost five months in port. Anything for the baby seals!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Investor's Corner

Tesla analyst realizes one big thing about the stock: deliveries are losing importance

Published

on

Credit: Joe Tegtmeyer | YouTube

Tesla analyst Dan Levy of Barclays realized one big thing about the stock moving into 2026: vehicle deliveries are losing importance.

As a new era of Tesla seems to be on the horizon, the concern about vehicle deliveries and annual growth seems to be fading, at least according to many investors.

Even CEO Elon Musk has implied at times that the automotive side, as a whole, will only make up a small percentage of Tesla’s total valuation, as Optimus and AI begin to shine with importance.

He said in April:

“The future of the company is fundamentally based on large-scale autonomous cars and large-scale and large volume, vast numbers of autonomous humanoid robots.”

Levy wrote in a note to investors that Tesla’s Q4 delivery figures “likely won’t matter for the stock.” Barclays said in the note that it expects deliveries to be “soft” for the quarter.

In years past, Tesla analysts, investors, and fans were focused on automotive growth.

Cars were truly the biggest thing the stock had to offer: Tesla was a growing automotive company with a lot of prowess in AI and software, but deliveries held the most impact, along with vehicle pricing. These types of things had huge impacts on the stock years ago.

In fact, several large swings occurred because of Tesla either beating or missing delivery estimates:

  • January 3, 2022: +13.53%, record deliveries at the time
  • January 3, 2023: -12.24%, missed deliveries
  • July 2, 2024: +10.20%, beat delivery expectations
  • October 3, 2022: -8.61%, sharp miss due to Shanghai factory shutdown
  • July 2, 2020: +7.95%, topped low COVID-era expectations with sizeable beat on deliveries

It has become more apparent over the past few quarters that delivery estimates have significantly less focus from investors, who are instead looking for progress in AI, Optimus, Cybercab, and other projects.

These things are the future of the company, and although Tesla will always sell cars, the stock is more impacted by the software the vehicle is running, and not necessarily the vehicle itself.

Continue Reading

News

Tesla removes Safety Monitors, begins fully autonomous Robotaxi testing

This development, in terms of the Robotaxi program, is massive. Tesla has been working incredibly hard to expand its fleet of Robotaxi vehicles to accommodate the considerable demand it has experienced for the platform.

Published

on

Credit: @Mandablorian | X

Tesla has started Robotaxi testing in Austin, Texas, without any vehicle occupants, the company’s CEO Elon Musk confirmed on Sunday. Two Tesla Model Y Robotaxi units were spotted in Austin traveling on public roads with nobody in the car.

The testing phase begins just a week after Musk confirmed that Tesla would be removing Safety Monitors from its vehicles “within the next three weeks.” Tesla has been working to initiate driverless rides by the end of the year since the Robotaxi fleet was launched back in June.

Two units were spotted, with the first being seen from the side and clearly showing no human beings inside the cabin of the Model Y Robotaxi:

Another unit, which is the same color but was confirmed as a different vehicle, was spotted just a few moments later:

The two units are traveling in the general vicinity of the South Congress and Dawson neighborhoods of downtown Austin. These are located on the southside of the city.

This development, in terms of the Robotaxi program, is massive. Tesla has been working incredibly hard to expand its fleet of Robotaxi vehicles to accommodate the considerable demand it has experienced for the platform.

However, the main focus of the Robotaxi program since its launch in the Summer was to remove Safety Monitors and initiate completely driverless rides. This effort is close to becoming a reality, and the efforts of the company are coming to fruition.

It is a drastic step in the company’s trek for self-driving technology, as it plans to expand it to passenger vehicles in the coming years. Tesla owners have plenty of experience with the Full Self-Driving suite, which is not fully autonomous, but is consistently ranked among the best-performing platforms in the world.

Continue Reading

News

Tesla refines Full Self-Driving, latest update impresses where it last came up short

We were able to go out and test it pretty extensively on Saturday, and the changes Tesla made from the previous version were incredibly impressive, especially considering it seemed to excel where it last came up short.

Published

on

Credit: TESLARATI

Tesla released Full Self-Driving v14.2.1.25 on Friday night to Early Access Program (EAP) members. It came as a surprise, as it was paired with the release of the Holiday Update.

We were able to go out and test it pretty extensively on Saturday, and the changes Tesla made from the previous version were incredibly impressive, especially considering it seemed to excel where it last came up short.

Tesla supplements Holiday Update by sneaking in new Full Self-Driving version

With Tesla Full Self-Driving v14.2.1, there were some serious regressions. Speed Profiles were overtinkered with, causing some modes to behave in a strange manner. Hurry Mode was the most evident, as it refused to go more than 10 MPH over the speed limit on freeways.

It would routinely hold up traffic at this speed, and flipping it into Mad Max mode was sort of over the top. Hurry is what I use most frequently, and it had become somewhat unusable with v14.2.1.

It seemed as if Speed Profiles should be more associated with both passing and lane-changing frequency. Capping speeds does not help as it can impede the flow of traffic. When FSD travels at the speed of other traffic, it is much more effective and less disruptive.

With v14.2.1.25, there were three noticeable changes that improved its performance significantly: Speed Profile refinements, lane change confidence, and Speed Limit recognition.

Speed Profile Refinement

Speed Profiles have been significantly improved. Hurry Mode is no longer capped at 10 MPH over the speed limit and now travels with the flow of traffic. This is much more comfortable during highway operation, and I was not required to intervene at any point.

With v14.2.1, I was sometimes assisting it with lane changes, and felt it was in the wrong place at the wrong time more frequently than ever before.

However, this was one of the best-performing FSD versions in recent memory, and I really did not have any complaints on the highway. Speed, maneuvering, lane switching, routing, and aggressiveness were all perfect.

Lane Changes

v14.2.1 had a tendency to be a little more timid when changing lanes, which was sort of frustrating at times. When the car decides to change lanes and turn on its signal, it needs to pull the trigger and change lanes.

It also changed lanes at extremely unnecessary times, which was a real frustration.

There were no issues today on v14.2.1.25; lane changes were super confident, executed at the correct time, and in the correct fashion. It made good decisions on when to get into the right lane when proceeding toward its exit.

It was one of the first times in a while that I did not feel as if I needed to nudge it to change lanes. I was very impressed.

Speed Limit Recognition

So, this is a complex issue. With v14.2.1, there were many times when it would see a Speed Limit sign that was not meant for the car (one catered for tractor trailers, for example) or even a route sign, and it would incorrectly adjust the speed. It did this on the highway several times, mistaking a Route 30 sign for a 30 MPH sign, then beginning to decelerate from 55 MPH to 30 MPH on the highway.

This required an intervention. I also had an issue leaving a drive-thru Christmas lights display, where the owners of the private property had a 15 MPH sign posted nearly every 200 yards for about a mile and a half.

The car identified it as a 55 MPH sign and sped up significantly. This caused an intervention, and I had to drive manually.

It seems like FSD v14.2.1.25 is now less reliant on the signage (maybe because it was incorrectly labeling it) and more reliant on map data or the behavior of nearby traffic.

A good example was on the highway today: despite the car reading that Route 30 sign and the Speed Limit sign on the center screen reading 30 MPH, the car did not decelerate. It continued at the same speed, but I’m not sure if that’s because of traffic or map data:

A Lone Complaint

Tesla has said future updates will include parking improvements, and I’m really anxious for them, because parking is not great. I’ve had some real issues with it over the past couple of months.

Today was no different:

Full Self-Driving v14.2.1.25 is really a massive improvement over past versions, and it seems apparent that Tesla took its time with fixing the bugs, especially with highway operation on v14.2.1.

Continue Reading