News
SpaceX’s next West Coast Falcon 9 landing could be decided by baby seals
SpaceX and the Canadian Space Agency (CSA) have – at long last – officially announced a launch date for the Radarsat Constellation Mission (RCM), a ~$1B trio of Earth observation satellites.
Delayed from November, February, March, and May, RCM is now scheduled to launch on a flight-proven Falcon 9 booster from California’s Vandenberg Air Force Base (VAFB) no earlier than June 11th. The three flight-ready spacecraft were shipped from Canada in September 2018 and have now been awaiting launch in a Southern California storage facility for more than half a year. The blame for such an egregious delay can be largely placed on SpaceX, but CSA and launch customer Maxar Technologies are also partially responsible. On a lighter note, the location of RCM’s subsequent Falcon 9 landing might end up being decided by seal pupping – baby harbor seals, in other words.
Although RCM’s slip from 2018 to 2019 remains unexplained, the mission’s journey from mid-February to mid-June is a different story. Still, next to nothing is publicly known about the process SpaceX launch customers go through after contracts have been signed, particularly with respect to how Falcon boosters are assigned to missions. This is further stymied by the fact that – to date – the ~$1 billion RCM is probably the most valuable payload SpaceX has ever attempted to launch, making it a clear outlier. But, as they say, “damn the epistemological torpedoes!”
Rocket logistics hell
RCM’s logistical hell and ~6 months of delays began on December 5th, 2018 when Falcon 9 Block 5 booster B1050 – having just completed its inaugural launch debut – experienced a hydraulic pump failure. The first of its kind, B1050’s pump failure killed grid fin control authority and forced the booster to abort into the Atlantic Ocean, where it somehow pulled off a landing soft enough to leave the rocket almost entirely intact. Even more surprisingly, B1050 was safely towed back to port, lifted onto dry land, and shipped off to one of SpaceX’s many Florida hangars for inspection.
Despite its near-miraculous survival, B1050 was immediately removed from SpaceX’s fleet of flightworthy boosters. Set to become the least flight-proven flight-proven Block 5 booster yet after supporting a low-energy Cargo Dragon mission, SpaceX and CSA/Maxar had apparently reached an agreement to launch RCM on B1050.2. Despite the availability of other boosters at the time, all available cores had completed two launches (B1046, 47, and 48) or were assigned to a second launch in the near-term (B1049). This is the only rational explanation for the delays that followed.
B1049 completed its second launch in mid-January 2019 and has since floated around various SpaceX facilities while waiting for its third mission. Had CSA/Maxar been okay with a twice-flown Falcon 9, B1049 could have likely supported RCM’s launch as early as March or April. Instead, the customer – as was apparently their right – concluded that being a booster’s third launch would be an unacceptable risk, whereas launching on a once-flown booster was acceptable. The only possible solution to those demands was to manifest RCM on Falcon 9 B1051, assigned to Crew Dragon’s launch debut.
Quite possibly the worst booster one could pick for schedule preservation, Crew Dragon’s launch debut slipped – to the surprise of very few – from January to February and finally to March 3rd. B1051 launched, landed without issue, and returned to Port Canaveral a few days later, where it was transported to Pad 39A for refurbishment. The relatively gently-used booster required a bit less than 8 weeks of inspection and refurbishment before being packaged and shipped to California near the end of April (see above). By now, B1051 is likely safely inside SpaceX’s SLC-4E integration hangar, preparing for upper stage integration and a routine pre-launch static fire test.



In short, an untimely Falcon 9 anomaly and customer preferences conspired to delay the launch of Canada’s Radarsat Constellation Mission by nearly four months, from February 18th to June 11th. With any luck, the mission’s flow will be issue-free and suffer no additional delays.
FCC launch communications licenses currently show that SpaceX plans to return Falcon 9 B1051 to the launch site (RTLS) after launch, rather than landing aboard drone ship Just Read The Instructions (JRTI). With a total launch mass likely around 5000 kg (11,000 lb), Falcon 9 should easily be able to manage a RTLS recovery. However, SpaceX’s West Coast LZ-4 use permit prevents the company from landing rockets at the pad during harbor seal pupping season, typically March thru June. The sonic booms and noise generated during Falcon 9’s spectacular landings might end up stressing endangered harbor seals, potentially causing parents to abandon their seal pups in confusion. As such, JRTI may be forced to get some exercise after spending almost five months in port. Anything for the baby seals!
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Man credits Grok AI with saving his life after ER missed near-ruptured appendix
The AI flagged some of the man’s symptoms and urged him to return to the ER immediately and demand a CT scan.
A 49-year-old man has stated that xAI’s Grok ended up saving his life when the large language model identified a near-ruptured appendix that his first ER visit dismissed as acid reflux.
After being sent home from the ER, the man asked Grok to analyze his symptoms. The AI flagged some of the man’s symptoms and urged him to return immediately and demand a CT scan. The scan confirmed that something far worse than acid reflux was indeed going on.
Grok spotted what a doctor missed
In a post on Reddit, u/Tykjen noted that for 24 hours straight, he had a constant “razor-blade-level” abdominal pain that forced him into a fetal position. He had no fever or visible signs. He went to the ER, where a doctor pressed his soft belly, prescribed acid blockers, and sent him home.
The acid blockers didn’t work, and the man’s pain remained intense. He then decided to open a year-long chat he had with Grok and listed every detail that he was experiencing. The AI responded quickly. “Grok immediately flagged perforated ulcer or atypical appendicitis, told me the exact red-flag pattern I was describing, and basically said “go back right now and ask for a CT,” the man wrote in his post.
He copied Grok’s reasoning, returned to the ER, and insisted on the scan. The CT scan ultimately showed an inflamed appendix on the verge of rupture. Six hours later, the appendix was out. The man said the pain has completely vanished, and he woke up laughing under anesthesia. He was discharged the next day.
How a late-night conversation with Grok got me to demand the CT scan that saved my life from a ruptured appendix (December 2025)
byu/Tykjen ingrok
AI doctors could very well be welcomed
In the replies to his Reddit post, u/Tykjen further explained that he specifically avoided telling doctors that Grok, an AI, suggested he get a CT scan. “I did not tell them on the second visit that Grok recommended the CT scan. I had to lie. I told them my sister who’s a nurse told me to ask for the scan,” the man wrote.
One commenter noted that the use of AI in medicine will likely be welcomed, stating that “If AI could take doctors’ jobs one day, I will be happy. Doctors just don’t care anymore. It’s all a paycheck.” The Redditor replied with, “Sadly yes. That is what it felt like after the first visit. And the following night could have been my last.”
Elon Musk has been very optimistic about the potential of robots like Tesla Optimus in the medical field. Provided that they are able to achieve human-level articulation in their hands, and Tesla is able to bring down their cost through mass manufacturing, the era of AI-powered medical care could very well be closer than expected.
News
Tesla expands Model 3 lineup in Europe with most affordable variant yet
The Model 3 Standard still delivers more than 300 miles of range, potentially making it an attractive option for budget-conscious buyers.
Tesla has introduced a lower-priced Model 3 variant in Europe, expanding the lineup just two months after the vehicle’s U.S. debut. The Model 3 Standard still delivers more than 300 miles (480 km) of range, potentially making it an attractive option for budget-conscious buyers.
Tesla’s pricing strategy
The Model 3 Standard arrives as Tesla contends with declining registrations in several countries across Europe, where sales have not fully offset shifting consumer preferences. Many buyers have turned to options such as Volkswagen’s ID.3 and BYD’s Atto 3, both of which have benefited from aggressive pricing.
By removing select premium finishes and features, Tesla positioned the new Model 3 Standard as an “ultra-low cost of ownership” option of its all-electric sedan. Pricing comes in at €37,970 in Germany, NOK 330,056 in Norway, and SEK 449,990 in Sweden, depending on market. This places the Model 3 Standard well below the “premium” Model 3 trim, which starts at €45,970 in Germany.
Deliveries for the Standard model are expected to begin in the first quarter of 2026, giving Tesla an entry-level foothold in a segment that’s increasingly defined by sub-€40,000 offerings.
Tesla’s affordable vehicle push
The low-cost Model 3 follows October’s launch of a similarly positioned Model Y variant, signaling a broader shift in Tesla’s product strategy. While CEO Elon Musk has moved the company toward AI-driven initiatives such as robotaxis and humanoid robots, lower-priced vehicles remain necessary to support the company’s revenue in the near term.
Reports have indicated that Tesla previously abandoned plans for an all-new $25,000 EV, with the company opting to create cheaper versions of existing platforms instead. Analysts have flagged possible cannibalization of higher-margin models, but the move aims to counter an influx of aggressively priced entrants from China and Europe, many of which sell below $30,000. With the new Model 3 Standard, Tesla is reinforcing its volume strategy in Europe’s increasingly competitive EV landscape.
News
Tesla FSD (Supervised) stuns Germany’s biggest car magazine
FSD Supervised recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets.
Tesla’s upcoming FSD Supervised system, set for a European debut pending regulatory approval, is showing notably refined behavior in real-world testing, including construction zones, pedestrian detection, and lane changes, as per a recent demonstration ride in Berlin.
While the system still required driver oversight, its smooth braking, steering, and decision-making illustrated how far Tesla’s driver-assistance technology has advanced ahead of a potential 2026 rollout.
FSD’s maturity in dense city driving
During the Berlin test ride with Auto Bild, Germany’s largest automotive publication, a Tesla Model 3 running FSD handled complex traffic with minimal intervention, autonomously managing braking, acceleration, steering, and overtaking up to 140 km/h. It recognized construction zones, braked early for pedestrians, and yielded politely on narrow streets.
Only one manual override was required when the system misread a converted one-way route, an example, Tesla stated, of the continuous learning baked into its vision-based architecture.
Robin Hornig of Auto Bild summed up his experience with FSD Supervised with a glowing review of the system. As per the reporter, FSD Supervised already exceeds humans with its all-around vision. “Tesla FSD Supervised sees more than I do. It doesn’t get distracted and never gets tired. I like to think I’m a good driver, but I can’t match this system’s all-around vision. It’s at its best when both work together: my experience and the Tesla’s constant attention,” the journalist wrote.
Tesla FSD in Europe
FSD Supervised is still a driver-assistance system rather than autonomous driving. Still, Auto Bild noted that Tesla’s 360-degree camera suite, constant monitoring, and high computing power mark a sizable leap from earlier iterations. Already active in the U.S., China, and several other regions, the system is currently navigating Europe’s approval pipeline. Tesla has applied for an exemption in the Netherlands, aiming to launch the feature through a free software update as early as February 2026.
What Tesla demonstrated in Berlin mirrors capabilities already common in China and the U.S., where rival automakers have rolled out hands-free or city-navigation systems. Europe, however, remains behind due to a stricter certification environment, though Tesla is currently hard at work pushing for FSD Supervised’s approval in several countries in the region.