Connect with us

News

SpaceX aces fifth astronaut launch in a year and half

SpaceX has aced its fifth Crew Dragon astronaut launch in less than 18 months. (SpaceX/Richard Angle)

Published

on

Less than 18 months after its first crewed launch, SpaceX’s Crew Dragon spacecraft and Falcon 9 rocket have successfully completed their fifth astronaut launch, sending a crew of four on their way to the International Space Station (ISS).

After ~10 days of weather and sequencing delays and two days after Crew-2 astronauts returned to Earth in a separate Dragon, once-flown Falcon 9 booster B1067 and new Crew Dragon capsule C210 (christened Endeavour) lifted off at 9:03pm EST on Wednesday, November 10th with four Crew-3 astronauts aboard.

For NASA astronauts Raja Chari, Thomas Marshburn, and Kayla Barron, and ESA astronaut Matthias Maurer, the launch is just the beginning of a more than six-month stint in low Earth orbit. When they arrive at the ISS around 7pm EST, November 11th, they’ll join one other NASA astronaut and two Russian cosmonauts – temporarily left for three days as a bit of a skeleton crew after Crew-2’s departure. Nominally, Crew-3 would have launched before Crew-2 to allow a true on-orbit hand-off with zero interruption, but poor weather ultimately led NASA to flip the order of operations at the last minute.

With just a few days to prepare, SpaceX and NASA managed to make that significant change happen and Crew-2 returned around 10pm EST on November 8th. Less than two days later, thanks to a near-perfect recovery, Crew-3 lifted off and is now in orbit and on the way to the ISS. SpaceX’s 24th launch of the year, Crew-3 is also its fifth astronaut launch since Demo-2, which saw the company launch its first crewed test flight – carrying two NASA astronauts – on May 30th, 2020.

Relative to other crewed spacecraft, completing the first five astronaut launches in less than a year and a half is no small feat. Crew Dragon is by no means the fastest to reach that five-flight milestone and is actually middle of the pack but a simple list of names and numbers belies the fact that every other spacecraft on that list was developed by a government agency with far more power over their budgets. Crew Dragon’s development, on the other hand, was funded and overseen by NASA but it was fully managed, designed, and built by private company SpaceX under a fixed-price contract.

Advertisement
-->
SpacecraftTime to 5 Crewed Flights
Gemini267d | 8 months 22 days
Apollo CSM278d | 9 months 5 days
Soyuz 7K351d | 11 months 16 days
Soyuz MS386d | 12 months 21 days
Mercury516d | 16 months 28 days
Crew Dragon529d | 17 months 11 days
Soyuz TM571d | 18 months 24 days
Shuttle578d | 18 months 30 days
Soyuz TMA-M646d | 21 months 7 days
Soyuz TMA715d | 23 months 14 days
Soyuz T749d | 24 months 19 days
Vostok793d | 26 months 2 days
Shenzhou3542d | 116 months 11 days
Clean-sheet spacecraft are in bold, new versions of existing spacecraft are in italics

SpaceX is also on track to launch Axiom-1 (the first all-private astronaut mission to the ISS) and Crew-4 – Dragon’s sixth and seventh astronaut launches – before the second anniversary of Demo-2. Of those seven scheduled launches, four will have been completed for NASA in less than 18 months – a launch cadence the space agency never expected its Commercial Crew Program partners would need to support. However, partner Boeing has unfortunately mismanaged its Starliner spacecraft development, causing multiple in-flight anomalies and ultimately incurring years of delays. Originally scheduled to perform its equivalent of Dragon’s Demo-2 test flight (CFT) in 2020, Starliner’s first crewed launch is now highly unlikely to occur before 2023.

As a result, NASA has been forced to lean entirely on SpaceX and SpaceX has had to pick up the slack and rapidly learn how to operate Crew Dragon at twice its planned cadence. Thankfully, despite the fact that Crew Dragon will ultimately cost NASA ~40% and $2 billion less than Starliner, SpaceX has more than managed to rise to the challenge and ensure that NASA has had uninterrupted access to the ISS since November 2020. Crew-3 continues that uninterrupted access – a service that Crew Dragon and SpaceX alone are now likely to provide until at least early to mid-2023.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

News

Tesla FSD (Supervised) is about to go on “widespread” release

In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”

Published

on

Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin. 

The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.

FSD V14.2 improvements

FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.

A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.

Elon Musk’s predicted wide release

The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”

FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles. 

Advertisement
-->
Continue Reading

News

Tesla FSD V14.2 starts rolling out to initial batch of vehicles

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Published

on

Credit: Grok Imagine

Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.

So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well. 

Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots. 

It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.

Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.

Advertisement
-->

Release Notes

2025.38.9.5

Currently Installed

FSD (Supervised) v14.2

Full Self-Driving (Supervised) v14.2 includes:

  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
  • Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!

Upcoming Improvements:

  • Overall smoothness and sentience
  • Parking spot selection and parking quality
Continue Reading